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Exercise 1. (Schur’s theorem) In a group G if Z(G) has finite index, then the
derived group G′ is finite.

Cheng Teorema E2.2

Exercise 2. If G is a torsion free group and Aut(G) is finite, the G is abelian.
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Exercise 3. Let be given two finite nilpotent groups G1 and G2 with nilpotence
class respectively c1 and c2. Prove that the direct product G1×G2 is a nilpotent
group of nilpotence class less or equal than the maximum between c1 and c2.

Exercise 4. A finite group is nilpotent if and only if xy = yx for any two
elements x, y with orders relatively coprime.
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Exercise 5. A group of order pn admits a central series of length n + 1, that
is the quotiens have order p.
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Exercise 6. The dihedral group Dn is nilpotent if and only if n = 2k.

Exercise 7. Let G be a nonabelian group of order pq, where p and q are distinct
primes. Show that G is solvable, but not nilpotent.

solvable: there exists either a p-Sylow or a q-Sylow that are normal. Suppose
that a p-Sylow P is normal. Then P ∼= Zp is abelian. So, the chain is given by
{1} / P / G. G is not nilpotent because none element of a q-Sylow commutes
with an element of a p-Sylow, otherwise we would have an element of order pq
and G would be cyclic. Thus Z(G) = {1}. It can also be used exercice 4.

Exercise 8. Let G be a finite solvable group, all of whose Sylow subgroups are
abelian. Prove that Z(G) ∩G′ = {1}.

Exercise 9. Let G be a group. Show that G is nilpotent if and only if G/Z(G)
is nilpotent.

Exercise 10. Let G be a finite nonabelian nilpotent group of order n. If p is
prime and p | n, show that p3 | n.


