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We study properties of integral domains in which it is given a semistar operation �

such that �̃ is the identity. In particular, we put attention to the case � = v, where v

is the divisorial closure.
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1. INTRODUCTION

Throughout D is an integral domain with quotient field K. To avoid trivial
cases we assume that D is not a field. We denote by F�D� the set of nonzero
D-modules contained in K, by f�D� the set of nonzero finitely generated D-modules
contained in K and by F�D� the set of nonzero fractional ideals of D.

A semistar operation on D is a map � � F�D� → F�D�� E �→ E�, such that, for
all x ∈ K, x �= 0, and for all E� F ∈ F�D�, the following properties hold:

��1� �xE�� = xE�;
��2� E ⊆ F implies E� ⊆ F�;
��3� E ⊆ E� and E�� �= �E��� = E� (cf. Fontana and Huckaba, 2000; Okabe and

Matsuda, 1994).

In the following we denote by dD (or simply by d) the identity semistar
operation on F�D�. We say that a semistar operation is trivial if E� = K for each
E ∈ F�D� and this happens if and only if D� = K (in fact, for each E ∈ F�D�,
E = ED, whence E� = �ED�� ⊇ ED� = K and so E� = K).

If � is a semistar operation on D, we can consider a map �f � F�D� → F�D�

defined as follows: for each E ∈ F�D�,

E�f �= ⋃{
F� �F ⊆ E� F ∈ f�D�

}
�
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WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1955

It is easy to see that �f is a semistar operation on D, called the semistar
operation of finite type associated to �. Note that, for each F ∈ f �D�, F� = F�f . A
semistar operation � is called a semistar operation of finite type if � = �f . Moreover
��f �f = �f (that is, �f is of finite type).

A quasi–�–ideal of D is a nonzero ideal I such that I = I� ∩D. A
quasi–�–prime is a quasi–�–ideal that is also a prime ideal. A quasi–�–maximal ideal
is an ideal that is a maximal element in the set of quasi–�–ideals. If � is a semistar
operation of finite type, each quasi-�-ideal is contained in a quasi-�-maximal ideal
(Fontana and Huckaba, 2000, Lemma 4.20). We denote by �-Max�D� the set of the
quasi-�-maximal ideals of D (when they exist).

Semistar operations are a generalization of the classical concept of star
operation described in Gilmer (1972, Section 32). When D� = D, a semistar
operation is usually called a (semi)star operation since it is exactly a star operation,
when it is restricted to the set of fractional ideals of D. For sake of simplicity, in the
following we will refer to a (semi)star operation by simply writing star operation.
This is justified by the fact that we will always use semistar operations of finite
type (in the sense explained above) and there is a bijection between (semi)star
operations of finite type and star operations of finite type on D (Picozza, 2005,
Proposition 3.11).

A very simple example of semistar operation that is not a star operation and is
not trivial is given by the extension to an overring. Let T be a proper overring of D,
T �= K. For each E ∈ F�D�, we put E��T� �= ET . Then, ��T� is a semistar operation but
not a star operation. In particular, ��T� is of finite type. In fact, for each E ∈ F�D�,
we have that

E��T� = ET = ⋃{
FT �F ⊆ E� F ∈ f�D�

} = ⋃{
F��T� �F ⊆ E� F ∈ f�D�

}
�

A semistar operation � is stable if �E ∩ F�� = E� ∩ F�, for each E� F ∈ F�D�
(cf. Fontana and Huckaba, 2000). For example, the semistar operation ��T� is stable
if and only if T is a flat overring of D (Picozza, 2005, Proposition 1.2).

Given a semistar operation � on an integral domain D it is possible to
construct a semistar operation �̃ which is stable and of finite type defined as follows:
for each E ∈ F�D�,

E�̃ �= {
x ∈ K � xJ ⊆ E� for some J ⊆ D� J ∈ f�D�� J� = D�

}

= ⋃{
�E � J� � J ⊆ D� J ∈ f�D�� J� = D�

}
�

An equivalent definition of the operation �̃ is the following:

E�̃ �= ⋂
P∈�f−Max

EDP�

It is well known that �̃ is a semistar operation and �f -Max�D� = �̃-Max�D�
(Fontana and Loper, 2003, Corollary 3.5(2)). For a more detailed account about �̃
we refer the reader to Wang and McCasland (1997), Anderson and Cook (2000),
Fontana and Huckaba (2000), and Fontana and Loper (2003). We recall the
following well-known fact.
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1956 PICOZZA AND TARTARONE

Lemma 1.1 (Fontana and Huckaba, 2000, Corollary 3.9(2)). Let D be a domain
with a semistar operation �. Then � = �̃ if and only if � is stable and of finite type.

If �1 and �2 are two semistar operations on D, we say that �1 ≤ �2 if E
�1 ⊆ E�2 ,

for each E ∈ F�D�. In general we have that �̃ ≤ �f ≤ �, for any semistar operation �.
A particularly interesting case is when � = v.
We briefly recall that if I is a nonzero fractional ideal of D, then Iv �=

�I−1�−1 = �D � �D � I�� is the divisorial closure of I , which is a star operation, and

Ivf = ⋃{
Jv � J ⊆ I� J ∈ f�D�

} =� I t�

is the t-closure of I . We say that I is divisorial (or a v-ideal) if I = Iv and that I is a
t-ideal if I = It. In general, I ⊆ It ⊆ Iv (in particular, a divisorial ideal is a t-ideal).
The t-operation is the finite type star operation associated with v.

A nonzero ideal J of D is called a Glaz–Vasconcelos ideal (in short, a GV-ideal)
if J is finitely generated and J−1 = D. The set of GV-ideals of D is denoted by
GV�D�.

Given a nonzero fractional ideal I of D, the w-closure of I is the ideal

Iw = �x ∈ K � xJ ⊆ I for some J ∈ GV�D���

that is, w = ṽ.
A nonzero fractional ideal I is a w-ideal if I = Iw. Now, w ≤ t ≤ v, that is, if

I ∈ F�D�, we have the following inclusions:

I ⊆ Iw ⊆ It ⊆ Iv�

It is well known that if � is a star operation on D, then � ≤ v, �f ≤ t and �̃ ≤ w.
The structure of the set of �-ideals in a domain D, for a chosen semistar

operation �, generally reflects some important properties of D. Thus, investigations
in this area may play an interesting role in ring classification problems.

For instance, in the more or less recent literature (cf. Bass, 1962; Bazzoni,
2000; Bazzoni and Salce, 1996; Heinzer, 1968), domains in which every nonzero
ideal is divisorial (i.e., divisorial domains) have been widely studied and characterized
in the integrally closed case. Also, it is well known that Prüfer domains are exactly
the integrally closed domains in which t = d (Gilmer, 1972, Proposition 34.12).

There are interesting results about domains in which every t-ideal is divisorial
(TV-domains, Houston and Zafrullah, 1988) and domains in which every w-ideal is
divisorial (El Baghdadi and Gabelli, 2005).

Moreover, very recently, Mimouni (2005) has studied domains in which each
nonzero fractional ideal of a domain D is a w-ideal, that is, where the operation w

is the identity (DW-domains).
Since DW-domains are exactly the domains in which proper GV-ideals do not

exist (Corollary 2.6), we have that the DW-property is equivalent to say that each
finitely generated, integral ideal is contained in a proper, integral, divisorial ideal.
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WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1957

This fact well generalizes the behavior with respect to the v-operation of the:

• Domains in which t = d: these are exactly the ones in which each finitely
generated ideal is divisorial;

• Domains in which v = d: these are exactly the ones in which each ideal is
divisorial.

Now, we have observed that DW-domains were already known some years
before (Dobbs et al., 1989, 1990, 1992) under the name of t-linkative domains. We
briefly recall that an overring T of a domain D is t-linked over D if for each
nonzero finitely generated fractional ideal J of D, such that J t = D, then �JT�t = T .
A domain D is t-linkative if every overring of D is t-linked over D. Now, Dobbs
et al. (1990, Theorem 2.6) establishes that a domain D is t-linkative if and only if
every maximal ideal is a t-ideal. This is exactly the characterization of DW-domains
given in Mimouni (2005, Proposition 2.2).

In Section 2 we consider a generic semistar operation � on a domain D and
study when �̃ = d, so generalizing the concept of DW-domain and some of the
results proved in Mimouni (2005). In particular we will see that the condition �̃ = d
is related to properties of valuation overrings of D, especially to a generalization of
the t-linkedness condition (Theorem 2.15).

In Section 3, we deal with the particular case of DW-domains and we study
when the DW-property on D transfers to the integral closure D′. We are interested
in evaluating how far integrally closed, DW-domains are from being Prüfer. This
question naturally arises from the fact that in literature there are various results
concerning the study of the Prüfer property for the integral closure of a domain D.
We show that all these known results are based on the fact that the domain D is
just DW. We will also study when the DW-property is local and give some results
in order to characterize the quasilocal (and semiquasilocal) DW-domains.

Finally, in Section 4 we will investigate the DW-property in Mori and, in
particular, Noetherian domains.

2. WHEN �̃ IS THE IDENTITY

Generalizing a well known terminology on star operations (Gilmer, 1972,
p. 395), we say that two semistar operations �1� �2 on a domain D are equivalent
if ��1�f = ��2�f . In this case we write �1 ∼f �2. Some important classes of integral
domains are characterized by the properties of systems of ideals determined by
semistar operations. For some of these characterizations it is enough to control the
behavior of the semistar operations on the finitely generated ideals, that is, they only
depend on the equivalence classes of semistar operations with respect to ∼f . For
example, given a semistar operation � on a domain D, D is �-Noetherian (i.e., the
ascending chain condition, a.c.c., property on the quasi-�-ideals of D holds) if and
only if D is �f -Noetherian (El Baghdadi et al., 2004, Proposition 3.5). Moreover, the
behavior of a domain D with respect to a semistar operation � may only depend
on �̃. This happens, for instance, for the property of being P�MD or semistar
Dedekind (cf. El Baghdadi et al., 2004; Fontana et al., 2003). This leads to the
following definition.
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1958 PICOZZA AND TARTARONE

Definition 2.1. Two semistar operations �1� �2 on a domain D are weakly
equivalent if �̃1 = �̃2. In this case, we write �1 ∼w �2.

It is easily seen from the definitions that when �1 ∼f �2 then �1 ∼w �2.
The converse is not true. In fact, v ∼w w, but, in general, t �∼f w (vf = t and
wf = w).

We also notice that �f ∼w �̃ (Fontana and Huckaba, 2000, Proposition 3.6(b)),
for any semistar operation �.

Proposition 2.2. Given a domain D, the following conditions are equivalent:

(i) D is a Prüfer domain;
(ii) For any two semistar operations �1� �2 on D

�1 ∼w �2 ⇒ �1 ∼f �2�

that is, ∼f = ∼w;
(iii) For any semistar operation � on D, �̃ = �f .

Proof. (i) ⇒ (ii) By Picozza (2005, Lemma 4.4) in a Prüfer domain D each
semistar operation of finite type is the extension to an overring of D. From Fontana
et al. (1997, Theorem 1.1.1), every overring of a Prüfer domain is flat. So any
semistar operation of finite type is stable by Picozza (2005, Proposition 1.2) and
��1�f = �̃1 = �̃2 = ��2�f .

(ii) ⇒ (iii) For any semistar operation �, �f ∼w �̃. From (ii), we have that
�f ∼f �̃. Then �f = �̃, since they both are semistar operations of finite type.

(iii) ⇒ (i) Statement (iii) means that any semistar operation on D of finite
type is stable by Lemma 1.1. In particular any extension to an overring of D is
stable, because it is of finite type. Hence each overring of D is flat and D is a Prüfer
domain (Fontana et al., 1997, Theorem 1.1.1; Picozza, 2005, Proposition 1.2).

We recall that given an integral domain D with a semistar operation �, D is
a P�MD if its localizations at the quasi-�f -prime ideals are valuation domains and
that D is �-Dedekind if it is �-Noetherian and its localizations at the quasi-�f -prime
ideals are rank-one discrete valuation domains (DVR).

By Fontana et al. (2003, Theorem 3.1) and El Baghdadi et al. (2004,
Corollary 4.3) we have the following result.

Proposition 2.3. If �1� �2 are two weakly equivalent semistar operations on a domain
D, then D is a P�1MD if and only if D is a P�2MD and D is a �1-Dedekind domain if
and only if D is a �2-Dedekind domain.

However, there are cases in which the weakly equivalence between two
semistar operations does not induce the equivalence between properties of the
domain related to the operations themselves. For instance, t ∼w w, but the classes of
Mori domains (t-Noetherian) and Strong Mori domains (w-Noetherian) are distinct.
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WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1959

Proposition 2.4. Let D be a domain with two semistar operations, �1 and �2.
The following conditions are equivalent:

(i) �1 ∼w �2;
(ii) The set of quasi-��1�f -maximal ideals of D coincides with the set of quasi-��2�f -

maximal ideals;
(iii) For each nonzero ideal I of D, I��1�f = D�1 if and only if I��2�f = D�2 .

Proof. (i) ⇒ (ii) It follows immediately from the fact that for any semistar
operation �, the set of quasi-�f -maximal ideals coincides with the set of quasi-�̃-
maximal ideals (Fontana and Loper, 2003, Corollary 3.5(2)).

(ii) ⇒ (iii) By Fontana and Huckaba (2000, Lemma 4.20), for any semistar
operation �, I�f � D� if and only if I is contained in a quasi-�f -maximal ideal.

(iii) ⇒ (i) It is a consequence of the definition of �̃. �

In the following we will be interested in studying when a semistar operation �

on D is weakly equivalent to the identity d, that is, when �̃ = d.

Corollary 2.5. Let D be a domain and let � be a semistar operation on D.
The following conditions are equivalent:

(i) �̃ = d;
(ii) Each maximal ideal of D is quasi-�f -maximal;
(iii) If I �= D is a nonzero finitely generated ideal of D, then I�f � D�f .

The version of Corollary 2.5 for � = v gives the characterization of
DW-domains in Mimouni (2005, Proposition 2.2). We denote by Max�D� the set of
the maximal ideals of D and by t-Max�D� the set of the t-maximal ideals of D.

Corollary 2.6. Let D be a domain. The following conditions are equivalent:

(i) D is a DW-domain;
(ii) Every maximal ideal of D is a t-ideal (i.e., Max�D� = t-Max�D�);
(iii) GV�D� = �D�.

As we pointed out in the Introduction, the problem of characterizing domains
in which every ideal is divisorial has been investigated in different contexts. Since
the divisorial closure is the unique maximal star operation, in any domain D, it
follows that divisorial domains are exactly the domains in which any star operation
is the identity. Analogously, as being the t-operation the unique, maximal star
operation of finite type, domains in which the t-operation is the identity are exactly
the domains in which any star operation of finite type is the identity. Also, for the
maximality of w among the stable and finite type star operations in any domain D,
DW-domains are the domains in which �̃ = d for any star operation �.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i R
om

a 
T

re
] 

at
 1

2:
41

 1
7 

Ja
nu

ar
y 

20
12

 



1960 PICOZZA AND TARTARONE

Theorem 2.7 (cf. Okabe and Matsuda, 1994, Theorem 48). Let D be a domain.
The following conditions are equivalent:

(i) D is a DVR;
(ii) � = d, for any nontrivial semistar operation � on D;
(iii) �f = d, for any nontrivial semistar operation � on D.

Proof. (i) ⇒ (ii), (iii). If D is a DVR, then every nontrivial semistar operation
on D is a star operation, because if D� is a proper overring of D, then D� = K and
so � is trivial. Hence � ≤ v. Since v = d (Gilmer, 1972, §34, Ex. 12), it follows that
� = d and also �f = d. Conversely, suppose that (ii) holds. If T �= K is an overring
of D, then ��T� is a nontrivial semistar operation on D different from d. Thus, D
cannot have overrings distinct from K, and so D is a one-dimensional valuation
domain. Again, from Gilmer (1972, §34, Ex. 12) V is a DVR. Since ��T� is a semistar
operation of finite type it is also proved (iii) ⇒ (i). �

Theorem 2.8. Let D be a domain. The following conditions are equivalent:

(i) D is one-dimensional and quasilocal;
(ii) �̃ = d, for any nontrivial semistar operation � on D.

Proof. First we note that for any nontrivial semistar operation � there exist
proper quasi-�-ideals. In fact, if D� �= K, there exists x ∈ D\�0� such that x is not
invertible in D�. Then, it is easy to see that xD� ∩D is a proper quasi-�-ideal. So,
by Fontana and Huckaba (2000, Lemma 4.20), each nontrivial semistar operation
has quasi-�f -maximal ideals. Now, assume that D is one-dimensional and quasilocal
with maximal ideal M and let � be a nontrivial semistar operation on D. Since D
has quasi-�f -maximal ideals and a quasi-�f -maximal ideal is prime, it follows that
M is a quasi-�f -maximal ideal (since it is the only nonzero prime ideal). It follows
that �̃ = d (Corollary 2.5).

Conversely, from Picozza (2005, Proposition 1.2), if T is a flat overring
of D, then ��T� = �̃�T�. It follows that D cannot have proper flat overrings and
this is equivalent to require that D is one-dimensional and quasilocal, since each
localization to a prime ideal is a flat overring of D. �

In Mimouni (2005, Corollary 2.3) it is shown that if D is a domain of
t-dimension 1, then D is DW if and only if D is one-dimensional. We can also easily
show the following result.

Proposition 2.9. Let D be a one-dimensional domain. Then D is DW.

Proof. By Jaffard (1960, Corollaire 3, p. 31) a prime ideal which is minimal over a
t-ideal is t-prime. Let M be a maximal ideal of D. Then M is minimal over a nonzero
principal ideal and so it is a t-ideal. It follows that D is DW. �

Theorem 2.10. Let D be a DW-domain with a semistar operation �. The following
conditions are equivalent:

(i) �̃ = d;
(ii) D�̃ = D.
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WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1961

Proof. (i) ⇒ (ii) It is obvious.

(ii) ⇒ (i) If D�̃ = D, then �̃ is a star operation, whence �̃ ≤ w. But w = d and
the thesis follows. �

Combining Proposition 2.9 and Theorem 2.10, we have the following
corollary.

Corollary 2.11. Let D be a one-dimensional domain with a semistar operation �. Then
�̃ = d if and only if D�̃ = D.

Remark 2.12. The analog of Proposition 2.9 holds for any �̃, when � is a star
operation (that is, if D is one dimensional, then �̃ = d for each star operation �), but,
as it is shown in Corollary 2.11, this result cannot be extended to proper semistar
operations. For instance, consider a one-dimensional domain D with two maximal
ideals, M1 and M2 and the semistar operation � �= ��DM1

�. Since DM1
is a flat overring

of D, �̃ = � by Picozza (2005, Proposition 1.2), and so � �= d since D�̃ = DM1
�= D.

As mentioned in the Introduction, DW-domains are exactly the t-linkative
domains. We can give an analogous characterization for the domains in which
�̃ = d, where � is a semistar operation on D. The linkedness property for an overring
of D, with respect to semistar operations, has been studied by El Baghdadi and
Fontana (2004). We recall that, if � is a semistar operation on a domain D and
�′ is a semistar operation on an overring T of D, then T is ��� �′�-linked over D
if I� = D� implies �IT��

′ = T�′ , for each nonzero finitely generated ideal I of D.
In this more general context, the t-linkedness corresponds exactly to the �tD� tT �-
linkedness, where tD and tT represent, respectively, the t-operation on D and on T .
We notice that the ��� �′�-linkedness property of the overring T only depends on the
semistar operations �̃ and �̃′. More precisely, by El Baghdadi and Fontana (2004,
Theorem 3.8), if �1 is a semistar operation on D and �2 is a semistar operation on
T such that �1 ∼w � and �2 ∼w �′, then T is ��� �′�-linked over D if and only if T is
��1� �2�-linked over D.

Lemma 2.13. Let D be a domain with a semistar operation D. Let T be an overring
of D. The following conditions are equivalent:

(i) T �̃ = T ;
(ii) T is ��� tT �-linked over D.

Proof. (i) ⇒ (ii) Let J be a nonzero finitely generated ideal of D such that
J� = D�. Let x ∈ �T � JT�, then xT ⊆ �T � J� and so xT ⊆ T �̃ = T . It follows that x ∈
T and so �JT�−1 = �T � JT� ⊆ T . Hence, �JT�tT = �JT�vT = T (where vT denotes the
v-operation on T ) and T is ��� tT �-linked over D.

(ii) ⇒ (i) By hypothesis we have that if I ∈ f�D� and I� = D�, then �IT�tT =
T . It follows that,

T �̃ = ⋃{
�T � I� � I ⊆ D� I ∈ f�D�� I� = D�

}
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1962 PICOZZA AND TARTARONE

⊆ ⋃{
�T � J� � J ⊆ T� J ∈ f�T�� JvT = J tT = T

}

= TwT = T�

where wT is the w-operation on T . �

If T is an overring of a domain D and � is a semistar operation on D, we
denote by ��F�T� the restriction of � to F�T�. This is a semistar operation on T by
Okabe and Matsuda (1994, Lemma 45). We note that if T� = T , then ��F�T� is a star
operation on T . In particular, if T is t-linked over D, then w�F�T� is a star operation.
Also, it is easy to check that w�F�T� is stable and of finite type.

Proposition 2.14. Let D be a domain with a semistar operation �. The following
conditions are equivalent:

(i) P is a quasi-�̃-prime ideal of D;
(ii) �̃�F�V� = dV , for each valuation overring of D centered in P;
(iii) V �̃ = V for each valuation overring of D centered in P;
(iv) There exists a valuation overring V of D centered in P such that V �̃ = V .

Proof. (i) ⇒ (ii) Let V be a valuation overring of D with maximal ideal M such
that M ∩D = P. Let ∗ �= �̃�F�V�. Suppose that ∗ �= dV . Since ∗ is a semistar operation
of finite type on V (Fontana and Loper, 2001, Corollary 2.8) distinct from the
identity, it is the extension to a proper overring W of V (see for example Picozza,
2005, Lemma 4.4). So, M�̃ ∩ V = M∗ ∩ V = MW ∩ V = W ∩ V = V . Thus, P�̃ ∩D =
�M ∩D��̃ ∩D = M�̃ ∩D = M�̃ ∩ V ∩D = V ∩D = D, a contradiction, since P is a
quasi-�̃-ideal of D. Hence, ∗ = dV .

(ii) ⇒ (iii) ⇒ (iv) is obvious.

(iv) ⇒ (i) Let M be the maximal ideal of V and let ∗ �= �̃�F�V�. Since ∗ is a star
operation of finite type on V , M�̃ = M∗ = M . It follows that P�̃ ∩D = �M ∩D��̃ ∩
D = M�̃ ∩D = M ∩D = P. Hence, P is a quasi-�̃-ideal of D. �

Theorem 2.15 (cf. El Baghdadi and Fontana, 2004, Theorem 3.9). Let D be a
domain with a semistar operation �. The following conditions are equivalent:

(i) �̃ = d;
(ii) T �̃ = T for each overring T of D;
(ii)′ Each overring T of D is ��� tT �-linked over D;
(iii) V �̃ = V for each valuation overring V of D;
(iii)′ Each valuation overring V of D is ��� tV �-linked over D;
(iv) V �̃ = V for each valuation overring V of D centered in a maximal ideal of D;
(iv)′ Each valuation overring V of D centered in a maximal ideal of D is ��� tV �-linked

over D;
(v) For each maximal ideal M of D, there exists a valuation overring V of D centered

in M such that V �̃ = V ;
(v)′ For each maximal ideal M of D, there exists a valuation overring V of D centered

in M that is ��� tV �-linked over D.
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WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1963

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) is obvious. (ii) ⇔ (ii)′, (iii) ⇔ (iii)′, (iv) ⇔
(iv)′ and (v) ⇔ (v)′ follow immediately by Lemma 2.13.

(v) ⇒ (i) is a consequence of Proposition 2.14(iv) ⇒ (i) and Corollary
2.5(ii) ⇒ (i). �

By the fact that t̃ = w we immediately recover Dobbs et al. (1992, Lemma 2.1)
as a corollary of the previous theorem (using the equivalence (i) ⇔ (ii)′).

Corollary 2.16. Let D be an integral domain. Then D is DW if and only if each
overring of D is t-linked over D.

We recall that the intersection of t-linked overrings of D is still t-linked over D
and each generalized quotient ring (in particular each localization) of D is t-linked
over D (Dobbs et al., 1989, Proposition 2.2(b), (d)). Thus, if D is a GQR-domain (i.e.,
each overring of D is an intersection of generalized quotient rings of D), then D is
DW. In particular QQR-domains, studied by Gilmer and Heinzer (1967), are DW.

A well-known semistar operation is the b-operation (the “completion” or
“integral closure” of ideals), defined as follows: let D be a domain and let �V	�	∈A
be the set of the valuation overrings of D. If E ∈ F�D�, then the b-closure of E

is Eb �= ⋂
	∈A EV	. It is easy to see that b is a star operation if and only if D is

integrally closed (and this is the case considered in Gilmer (1972, §32), otherwise b

is a proper semistar operation.

Corollary 2.17. Let D be a domain. Then b̃ = d. In particular, for any semistar
operation � on D, �̃ = d if and only if �̃ ≤ b.

Proof. If V is an overring of D, then V b̃ ⊆ Vb = V , whence V = V b̃. Thus, using
the condition given in Theorem 2.15(iii) the thesis follows. �

Now, we ask whether the property � = d, for some semistar operation � on a
domain D, is a local property. Given a prime ideal P of D, we put �P �= ��F�DP�

.

Proposition 2.18. Let D be a domain D with a semistar operation �. The following
conditions are equivalent:

(i) � = d;
(ii) �M = dM , for each maximal ideal M of D.

Proof. (i) ⇒ (ii) It is obvious.

(ii) ⇒ (i) This directly follows from the fact that E = ⋂
M∈Max�D� EM and

E� ⊆ ⋂
M∈Max�D�

�EM�
� = ⋂

M∈Max�D�

�EM�
�M = ⋂

M∈Max�D�

EM = E� �
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1964 PICOZZA AND TARTARONE

3. DW-DOMAINS

In this section we study domains in which the w-operation is the identity
(DW-domains) and outline some relations between the DW-property of D and
of D′ (where D′ denotes, as usual, the integral closure of D). In Dobbs et al.
(1992, Corollary 2.7) it is shown that treed domains are always DW. Important
classes of treed domains are Prüfer domains, domains with Krull dimension ≤1,
going-down domains (these classes are explicitely considered in Dobbs et al., 1992),
and the stable domains (Sally and Vasconcelos, 1974). Moreover, Dobbs et al. (1992,
Theorem 2.4) shows that domains whose integral closure is Prüfer are DW-domains,
and these are not necessarily treed (for such an example see, for instance, Papick,
1976b, Example 2.28).

In the following, we will give examples of DW-domains which do not belong
to any of the above classes of domains.

We recall that given a domain D the Nagata Ring (see, for instance, Gilmer,
1972, §33) is defined as follows:

D�X� �= �f/g � f� g ∈ D
X�� c�g� = D��

(where c�h� is the content of a polynomial h ∈ D
X�). First in Kang (1989) and then
in Fontana and Loper (2003), the authors extended the construction of the Nagata
Ring referring to an arbitrary chosen semistar operation � on D, as follows:

Na�D� �� �= �f/g � f� g ∈ D
X�� g �= 0� c�g�� = D���

With these notation Na�D� d� = D�X�. We also recall that Na�D� �� =
Na�D� �f � = Na�D� �̃� (Fontana and Loper, 2003, Corollary 3.5).

We remark that Na�D� v� is always DW. In fact the maximal ideals of Na�D� v�
are of the type M�X�, where M ranges among the t-maximal ideals of D (Kang,
1989, Proposition 2.1). Thus they are t-ideals from Kang (1989, Corollary 2.3).
In particular, we have the following proposition.

Proposition 3.1. Let D be a domain. The following conditions are equivalent:

(i) D is DW;
(ii) Na�D� v� = D�X�;
(iii) D�X� is DW.

Proof. (i) ⇒ (ii) Na�D� v� = Na�D�w� = Na�D� d� = D�X�.

(ii) ⇒ (iii) Obvious, since we have observed above that Na�D� v� is always
DW.

(iii) ⇒ (i) Since the maximal ideals of D�X� are exactly the ideals M�X�,
with M ∈ Max�D�, and since M�X�t = Mt�X� (Kang, 1989, Corollary 2.3), the thesis
directly follows. �

So, the Nagata Ring can be used to give new examples of DW-domains. For
instance, it is known that D�X� is treed if and only if D is treed and the integral
closure of D is Prüfer (Anderson et al., 1989, Theorem 2.10). Thus if we take a
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WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1965

treed domain D such that D′ is not Prüfer (for instance, take D �= �+ X��Y�

X��;
Anderson et al., 1989, Remark 2.11), then D�X� is DW but not treed. Moreover the
integral closure D�X�′ = D′�X� (Anderson et al., 1989, Proposition 2.6) is not Prüfer
(Arnold, 1969).

Heinzer (1968) showed that the divisorial integrally closed domains are
the Prüfer domains satisfying determined finiteness conditions on prime ideals.
Also, it is known that the integrally closed domains such that t = d are exactly the
Prüfer domains. But, for a general integral domain, these questions are still open.

Now, the class of integrally closed DW-domains obviously contains the Prüfer
domains as a proper subset. We will show that this class also contains a family of
pullback domains, but it is even larger because we will give examples of integrally
closed DW-domains which are neither Prüfer, nor a pullback belonging to the
above-cited family.

Proposition 3.2. Let D be a domain such that every maximal ideal M is not the union
of prime ideals properly contained in M . Then D and D′ are DW-domains.

Proof. Since any maximal ideal M is not the union of prime ideals properly
contained in M , then M is minimal over a principal ideal. Thus, M is a t-ideal
(Jaffard, 1960, Corollaire 3, p. 31) and D is DW. It is easy to check that if each
maximal ideal of D is minimal over a principal ideal, then the same holds for each
maximal ideal of D′. Thus D′ is DW too. �

We notice that there exist DW-domains in which each maximal ideal is a
union of prime ideals. For example take a valuation domain with the maximal ideal
unbranched (Gilmer, 1972, Theorem 17.3).

We have the following corollary.

Corollary 3.3. Let D be a domain with finite prime spectrum. Then D and D′ are
DW-domains.

In general, if a domain D satisfies the following property:

�♦� each maximal ideal is minimal over a principal ideal�

then D is DW (since each maximal ideal is a t-ideal). Moreover, if D satisfies �♦�,
then D′ satisfies �♦� too and so D′ is DW. This is exactly the argument proving
Proposition 3.2 and Corollary 3.3. If we consider a treed domain of finite dimension,
then it is easy to check that �♦� holds. Hence finite-dimensional, treed domains form
another class of DW-domains whose integral closure is DW.

But, generally, the integral closure of a DW-domain is not necessarily DW.
Consider the following pullback diagram:

D = �+ �X� Y��
X� Y��X�Y� −−−−→ �	
	

�
X� Y��X�Y� −−−−→ ��
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1966 PICOZZA AND TARTARONE

Here and in the following diagrams, the vertical arrows are the natural
inclusions and the horizontal arrows are the natural projections. Then, D is DW by
Dobbs et al. (1989, Remark 2.8(b)). The integral closure of D is D′ = �
X� Y��X�Y�
(Fontana, 1980, Corollary 1.5) and this is not DW. In fact D′ is a quasilocal, Krull
domain (being Noetherian and integrally closed). Thus D′ is DW if and only if M
is principal (Mimouni, 2005, Corollary 2.3), which does not hold.

Proposition 3.4. Let D be a domain. The following conditions are equivalent:

(i) D is DW;
(ii) w�F�D′� = dD′ ;
(iii) There exists an overring T of D such that the Lying Over (LO) property holds for

the extension D ⊂ T and w�F�T� = dT .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are obvious.

(iii) ⇒ (i) Let M be a maximal ideal of D. Since the LO holds, there exists a
prime ideal P of T such that P ∩D = M . Then

Mw = �P ∩D�w = Pw ∩D = PdT ∩D = P ∩D = M�

Hence M is a w-ideal, thus M is a t-ideal (since t-Max�D� = w-Max�D�) and D is
DW. �

Corollary 3.5. Let D be a domain. If there exists an overring T of D which is an
integral extension of D, t-linked over D and it is DW, then D is DW. (In particular, if
D′ is t-linked over D and DW then D is DW.)

Proof. Since T is t-linked over D, then w�F�T� is a star-operation on T , stable and
of finite type (as we have noticed at p. 1962). Then, w�F�T� ≤ wT = dT and so w�F�T� =
dT . Moreover since D ⊂ T is an integral extension, the LO holds and D is DW by
Proposition 3.4. �

The converse of Corollary 3.5 does not hold. In fact if D is DW and D′ is
t-linked over D, then D′ may not be DW. An example of this fact is given again by
the domain D = �+ �X� Y��
X� Y��X�Y�. In fact we have seen that D′ = �
X� Y��X�Y�
is not DW and D is DW. Moreover D′ is t-linked over D since we have already
noticed that all the overrings of a DW-domain are t-linked.

It is well known that if D ⊂ R ⊂ T are integral domains (with the same
quotient field) such that R is t-linked over D and T is t-linked over R, then T is
t-linked over D, that is,

D
t-linked
↪→ R

t-linked
↪→ T ⇒ D

t-linked
↪→ T�

The domain D = �+ �X� Y��
X� Y��X�Y� shows that, in general,

D ⊂ R ⊂ T� D
t-linked
↪→ R� D

t-linked
↪→ T �⇒ R

t-linked
↪→ T�
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WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1967

In fact, since D′ is not DW, there exists an overring T of D′ which is not t-linked
over D′. But T is also an overring of D, D is DW, whence T is t-linked over D.

We know that a Prüfer domain is DW, since in a Prüfer domain t = d, and we
have already recalled that Prüfer domains are exactly the integrally closed domains
such that t = d. We still do not know which the structure of the integrally closed
DW-domains is, but we can investigate how far an integrally closed DW-domain is
from being Prüfer. For example, it is easily seen that if D is DW, then D is Prüfer
if and only if D is a PvMD (we recall that a PvMD is an integrally closed domain
with w = t).

We recall that a domain D is:

• Coherent if the intersection of two finitely generated ideals is finitely generated;
• Quasicoherent if I−1 is finitely generated when I is a nonzero finitely generated
ideal of D;

• Finite conductor if aD ∩ bD is finitely generated for each a� b ∈ D.

It is also well known that (see for instance Gabelli and Houston, 1997)

coherent ⇒ quasicoherent ⇒ finite conductor�

Using the fact that if D is quasicoherent, then D′ is t-linked over D (Dobbs
et al., 1989, Corollary 2.14), we have the following particular case of Corollary 3.5.

Proposition 3.6. Let D be a quasicoherent domain such that D′ is DW. Then D is
DW.

Theorem 3.7. Let D be an integrally closed, DW domain. Then D is Prüfer if and
only if D is finite conductor.

Proof. Suppose that D is Prüfer. Then D is coherent (Gilmer, 1972,
Proposition 25.4), whence it is finite conductor.

Conversely, D is an integrally closed, finite conductor domain, so D is a PvMD
by Zafrullah (1978, Theorem 2). Thus D is Prüfer. �

Since a Prüfer domain is integrally closed and DW, we can reformulate the
above result as follows:

Prüfer ⇔ DW + integrally closed+ finite conductor�

Vasconcelos raised the following conjecture (cf. Glaz and Vasconcelos, 1984,
Conjecture C3, p. 223):

“If D is a one-dimensional, coherent domain, then D′ is Prüfer.”
In Papick (1978) the author gives a partial answer to this question for domains

D having a very finite extension (an extension D ⊆ T is very finite if each extension
S, with D ⊆ S ⊆ T , is of finite type as a D-module). Papick shows that if D is a
one-dimensional, coherent domain such that, for each P ∈ Spec�D� with DP not
integrally closed, DP has a very finite extension, then D′ is Prüfer.
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1968 PICOZZA AND TARTARONE

We know that one-dimensional domains are always DW. Thus, we will put
ourselves in the more general context of DW, coherent domains and see what
happens to their integral closure in terms of Prüfer-like conditions.

Corollary 3.8. Let D be a domain such that D′ is finitely generated as a D-module.
Assume that D is DW and coherent, then D′ is Prüfer if and only if D′ is DW.

Proof. The thesis directly follows from Theorem 3.7 and from the fact that D′ is
coherent because it is finitely generated over the coherent domain D (Harris, 1966,
Corollary 1.5). �

Corollary 3.9. Let D be a coherent, one-dimensional domain such that D′ is finitely
generated as a D-module. Then D′ is Prüfer.

So, in the cases in which D is DW implies D′ is DW (for instance,
the one-dimensional case and all the cases considered in Proposition 3.2 and
Corollary 3.3) we have that

D is (DW + coherent)+D
finite type
↪→ D′ ⇒ D′ Prüfer�

Remark 3.10. Different versions of Theorem 3.7 for the quasilocal case can be
found in literature with hypotheses stronger than DW (and with the hypothesis of
coherence, which is stronger than finite conductor). For instance:

(i) D is one-dimensional (Quentel, 1967, Corollaire 2);
(ii) D is treed (McAdam, 1972, Theorem 2);
(iii) D has a minimal overring (Papick, 1976a, Theorem 2.8).

We know that the one-dimensional and the treed domains are DW. Moreover
an integrally closed, quasilocal domain having a minimal overring is DW because
the maximal ideal is the radical of a principal ideal (Ayache, 2003, Theorem 1.2),
hence it is a t-ideal. So, these results can all be recovered as corollaries of
Theorem 3.7.

In Section 4 (Theorem 4.2) we will show that quasilocal, integrally closed
Mori (in particular, Noetherian) domains which are DW are DVR’s or �M � M� �= D
(where M is the maximal ideal of D). But, outside the Mori case, domains with these
properties may not fall in one of these two classes.

An example of a quasilocal, integrally closed domain D which is DW but it is
not a valuation domain and also �M � M� = D can be obtained with the following
construction. In the field ��X� consider any rank-one valuation domain �V�M�
which is not a DVR and containing a nonzero prime number p. Put D �= V ∩�
X�.
In Loper and Tartarone (to appear, Lemmas 1.3 and 1.15) these domains are studied
and it is shown that � = M ∩�
X� is height-two and is the radical of �p�, whence
it is a t-ideal. Moreover, �D� is still minimal over the principal ideal generated by
p and so it is a t-ideal. Then D� is DW. Now, D� = V� ∩�
X�� = V ∩�
X�� is
completely integrally closed and then ��D� � �D�� = D� (Gilmer, 1972, Theorem
34.3). Finally, D� is not a valuation domain, since it is two-dimensional (recall that
the completely integrally closed valuation domains are one-dimensional).
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Generally, we notice that the DW-property does not always localize (see
Example 3.12). This is due to the fact that, in general, the w-operation on DM (for
any M ∈ Max�D�) is not the restriction to DM of the w-operation on D and so we
cannot apply Proposition 2.18.

We recall that an integral domain is v-coherent if for each nonzero finitely
generated ideal I of D, Iv = J−1, for some finitely generated ideal J of D. Important
examples of v-coherent domains are Noetherian domains, Krull domains and
PvMD’s.

In Mimouni (2005, Theorem 2.9) it is shown that if D is a v-coherent domain,
then the DW-property localizes. But the v-coherence does not give a sharp bound
for domains in which the DW-property is local. In Zafrullah (1990), the author
studies when a t-prime ideal P of a domain D is such that PDP is still a t-ideal
in DP . In this case P is called a well-behaved ideal and a domain D in which
every t-prime ideal is well-behaved is a well-behaved domain. Moreover, a domain
D in which all the t-maximal ideals are well-behaved is conditionally well-behaved.
Obviously, a well-behaved domain is conditionally well-behaved. In particular,
v-coherent domains are conditionally well-behaved.

Now, if D is locally DW then D is DW (Mimouni, 2005, Theorem 2.9) but
the converse does not always hold (Mimouni, 2005, Example 2.10). In the next
result we generalize Mimouni (2005, Theorem 2.9) replacing the v-coherence with
the conditionally well-behavior of D.

Proposition 3.11. Let D be an integral domain. Any two of the following conditions
imply the third one:

(i) D is conditionally well-behaved;
(ii) D is DW;
(iii) DM is DW, for each maximal ideal M of D.

Proof. (i), (ii) ⇒ (iii) Let M be a maximal ideal of D. Since D is DW, then M is
a t-ideal. Moreover D is conditionally well-behaved, so MDM is still a t-ideal in DM ,
whence DM is DW.

(i), (iii) ⇒ (ii) In general, (iii) ⇒ (ii) by Mimouni (2005, Theorem 2.9).

(ii), (iii) ⇒ (i) Suppose that M is a t-maximal ideal of D. Since D is DW, any
maximal ideal of D is a t-ideal, thus M is maximal in D. By (iii), DM is DW, so MDM

is a t-ideal. Thus D is conditionally well-behaved. �

From the previous proposition it follows that the conditionally well-behaved
domains are exactly the class of domains for which the DW-property localizes at
the maximal ideals.

Example 3.12. Since there exist conditionally well-behaved domains which are
not well-behaved, it may happen that D and DM are DW-domains, for each
M ∈ Max�D�, but DP is not DW for some nonmaximal, prime ideal P of D. An
example of such a domain (which is given in Zafrullah, 1990, §2) is the following:
take D �= V + XVQ
X�, where V is a valuation domain of rank >1, Q is a nonzero,
nonmaximal ideal of V and X is an indeterminate over V .

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i R
om

a 
T

re
] 

at
 1

2:
41

 1
7 

Ja
nu

ar
y 

20
12

 



1970 PICOZZA AND TARTARONE

Proposition 3.13. Let D be an integral domain. Then, the following conditions are
equivalent:

(i) D is locally DW;
(ii) each flat overring of D is DW.

Proof. (i) ⇒ (ii) Take a flat overring T of D. Let M be a maximal ideal of T .
Then TM = DM∩D is DW, whence T is DW.

(ii) ⇒ (i) The localizations of D are flat overrings. �

Since for wide classes of domains the DW-property is local (with respect
to the maximal ideals), we will study some conditions which are related to the
DW-property in quasilocal and, sometimes, semiquasilocal domains. Let �D�M� be
a quasilocal domain, we distinguish two main cases:

• �M � M� �= D;
• �M � M� = D.

We soon examine the first case, for which the DW-property always holds.

Proposition 3.14. Let �D�M� be a quasilocal domain such that �M � M� �= D. Then
D is DW.

Proof. Let R �= �M � M�. Since R �= D, the following pullback diagram holds:

D −−−−→ D/M	
	

R −−−−→ R/M�

Hence M is divisorial (since it is the conductor of R into D), whence M is a t-ideal
and D is DW. �

Proposition 3.15. Let D be a domain with a maximal ideal M such that �M � M� =
D. Then M is divisorial if and only if M is invertible.

Proof. A maximal ideal M is divisorial if and only if M−1 �= D. With our
assumption, this happens if and only if �M � M� �= M−1. Then M � MM−1 ⊆ D.
Whence MM−1 = D and M is invertible. �

Corollary 3.16. Let D be a quasisemilocal domain and M a maximal ideal of D such
that �M � M� = D. Then M is divisorial if and only if M is principal.

An interesting case in which �M � M� = D, for each maximal ideal M , is
given by the completely integrally closed domains (Gilmer, 1972, Theorem 34.3). In
particular, we have the following proposition.
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Proposition 3.17. Let D be a quasisemilocal completely integrally closed domain
such that all the maximal ideals are finitely generated. Then D is DW if and only if each
maximal ideal is principal.

Proof. It is enough to observe that if an ideal is finitely generated, then it is a
t-ideal if and only if it is divisorial. �

The hypothesis that the maximal ideals are finitely generated cannot be
dropped down in the previous statement. For instance, take a one-dimensional
valuation domain which is not a DVR. In this case V is DW, it is completely
integrally closed and the maximal ideal is not principal.

Krull domains are completely integrally closed (Gilmer, 1972, §43). Hence we
get that if D is a quasisemilocal, Krull domain, then D is DW if and only if D is a
Principal Ideal Domain (PID). We notice that this result can be also easily obtained
as a corollary of Mimouni (2005, Corollary 2.3), using the fact that a quasisemilocal
Dedekind domain is a PID.

For the following result we recall that a nonzero ideal I in a domain D is
t-invertible if �II−1�t = D.

Proposition 3.18. Let �D�M� be a quasilocal domain.

(1) If �M � M� �= D, then D is DW;
(2) If �M � M� = D and M is finitely generated, then D is DW if and only if M is

principal;
(3) If �M � M� = D and M is not finitely generated, then D is DW if and only if M is

not t-invertible.

Proof. (1) The thesis directly follows from Proposition 3.14.

(2) Since M is finitely generated, M is a t-ideal if and only if it is divisorial.
By Corollary 3.16, M is divisorial if and only if M is principal.

(3) If M is not finitely generated, then M is not invertible. From Dobbs et al.
(1989, Theorem 2.6) if D is DW, M is not t-invertible.

Conversely, if M is not t-invertible, then M is a t-ideal. In fact, if not,
then Mt = D, and so �MM−1�t = Mt = D. Thus M is t-invertible against the
assumption. �

We notice that in Cases (1) and (2) M is divisorial, while Case (3) points to
the domains in which M is a t-ideal but it is not divisorial.

Finally, we remark that, whatever domain D is, if M is not t-invertible, then
M is a t-ideal and D is DW.

4. MORI AND NOETHERIAN DOMAINS

In this section, we characterize Noetherian and Mori domains which are DW.
We recall that the Noetherian domains in which v = d have been widely

studied starting from the sixties with the works of Bass (1962) and Heinzer (1968).
Precisely, Bass gives the following characterization (Bass, 1962, Corollary 3.4):
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1972 PICOZZA AND TARTARONE

“Let D be a Noetherian domain. Then D is divisorial if and only if its injective
dimension is ≤1 (i.e., D is Gorenstein).”

We also observe that in the Noetherian case v = t, whence the above result
also characterizes Noetherian domains in which t = d (in the integrally closed case
these are exactly the Dedekind domains).

We recall that a Mori domain is a domain in which the a.c.c. on integral
divisorial ideals holds (for a wide resume see, for instance, Barucci, 2000) and a
Strong Mori domain is a domain in which the a.c.c. on integral w-ideals holds
(see, for instance, Wang and McCasland, 1999). The Strong Mori domains form
an intermediate class of domains between the Noetherian and the Mori ones.
Generally, these classes are distinct, but in the DW-case the Noetherian and the
Strong Mori domain classes coincide.

Since we have shown that the one-dimensional domains are DW, we soon get
the following well known result (Wang and McCasland, 1999, Corollary 1.10).

Proposition 4.1. A one-dimensional domain is Noetherian if and only if it is Strong
Mori.

For a quasilocal, Mori domain, we have the following characterization.

Theorem 4.2. Let �D�M� be a quasilocal, Mori domain. Then D is DW if and only if
�M � M� �= D or D is a DVR.

Proof. If �M � M� �= D or D is a DVR, then D is DW by Propositions 3.14 and 2.9.
Conversely, suppose that D is DW and that �M � M� = D. We will show that

D is a DVR.
The maximal ideal M is a t-ideal, and since in a Mori domain t = v, M is

divisorial. Therefore, M−1 �= D (otherwise we would have Mv = �M−1�−1 = D). By
hypothesis D = �M � M�, whence M−1 �= �M � M� that is, M is not strong. By Barucci
(2000, Theorem 3.4) D = DM is a DVR. �

Corollary 4.3. Let �D�M� be a quasilocal domain such that �M � M� = D. Suppose
that D is DW. The following conditions are equivalent:

(i) D is Noetherian;
(ii) D is Mori;
(iii) D is a DVR.

The following example shows that when �D�M� is a quasilocal domain with
�M � M� �= D (so D is DW), then D can be Mori but not Noetherian (and of any
Krull dimension).

Example 4.4. Consider the following pullback diagram:

D �= �p + X�p�t�
X��X� −−−−→ �p = D/M	
	

B �= �p�t�
X��X� −−−−→ �p�t� = B/M

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i R
om

a 
T

re
] 

at
 1

2:
41

 1
7 

Ja
nu

ar
y 

20
12

 



WHEN THE SEMISTAR OPERATION �̃ IS THE IDENTITY 1973

where M �= X�p�t�
X��X�. In this case, D is a Mori domain. In fact, since B
is Noetherian, M is a Mori ideal in B (Barucci, 2000, Theorem 8.1) and D
is Mori from Barucci (2000, Theorem 8.2). But D is not Noetherian since the
extension �p ↪→ �p�t� is not finite (Fontana, 1980, Proposition 3.1(11)). This
same construction works out if we set B �= �p�t�
X1� � � � � Xn��X1�����Xn�

and M �=
�X1� � � � � Xn��p�t�
X1� � � � � Xn��X1�����Xn�

.
Then D �= �p + �X1� � � � � Xn��p�t�
X1� � � � � Xn��X1�����Xn�

is still a Mori, non
Noetherian domain and dim�D� = n.

More generally, we have the following characterization of Mori, DW domains.

Proposition 4.5. Let D be a Mori domain. Then D is DW if and only if, for each
maximal ideal M of D, one of the two following conditions holds:

(1) �M � M�DM �= DM ;
(2) DM is a DVR.

Proof. Since a Mori domain is conditionally well-behaved (Houston and Zafrullah,
1988, Corollary 1.8), by Proposition 3.11 D is DW if and only if DM is DW, for each
M ∈ Max�D�. By Theorem 4.2, DM is Mori if and only if �MDM � MDM� �= DM or
DM is a DVR. Now, it is enough to show that the two conditions �M � M�DM �= DM

and �MDM � MDM� �= DM are equivalent. Obviously, if �MDM � MDM� �= DM then
�M � M�DM �= D. Conversely, if �M � M�DM �= DM , then �M � M� �= D and M−1 �=
D, whence M is divisorial. Since D is Mori, there exists a finitely generated ideal
I such that M = Iv. Thus �M � M�DM = �M � Iv�DM = �M � I�DM = �MDM � IDM� ⊇
�MDM � MDM�. It follows that �M � M�DM = �MDM � MDM� and �MDM � MDM� �=
DM . �

Since a Noetherian domain is Mori, we can apply the above result to this
important particular case obtaining the following characterization.

Corollary 4.6. Let D be a Noetherian domain. Then D is DW if and only if for each
maximal ideal M of D one of the two following conditions holds:

(1) �M � M�DM �= DM ;
(2) M is invertible (then M has height one).

Proof. It is enough to notice that condition (2) of Proposition 4.5 in the
Noetherian case is equivalent to say that M is invertible (that is finitely generated
and locally principal). �
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