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Abstract. Let D be a domain, E a subset of its quotient field K , and Int(E,D) = {f ∈
K[X] | f (E) ⊆ D}. The polynomial closure of E is the set clD(E) = {x ∈ K | f (x) ∈
D, ∀ f ∈ Int(E,D)}. We compare the polynomial closure with the divisorial closure in a
general setting and then in an essential domain. Especially, we show that these two closures
of ideals are the same if D is a Krull-type domain.

Introduction

Let D be an integral domain with quotient field K . For each subset E ⊆ K ,
Int(E,D) := {f ∈ K[X] | f (E) ⊆ D} is called the ring of D-integer-valued
polynomials over E. As usual, when E = D, we set Int(D) := Int(D,D).

The polynomial closure (in D) of E is defined as the set

clD(E) := {x ∈ K | f (x) ∈ D, ∀ f ∈ Int(E,D)},
that is, clD(E) is the largest subset F ⊆ K such that Int(E,D) = Int(F,D).

The first papers about polynomial closure (for instance, [3], [8], [10] and [12])
set it in a topological context. Among many other results, it was proven that in a
Dedekind domain with finite residue fields, the polynomial closure of a subsetE is
the same as the intersection of its topological closures in every maximal ideal-adic
topology.

There is another way to look at the polynomial closure. That is to study it as a
star-operation [7, Lemma 1.2]. Recall that a fractional ideal I of D is a D-module
such that dI ⊆ D for some nonzero element d ∈ D, and denote by F(D) the set of
nonzero fractional ideals ofD. A star-operation is a mapping ∗ : F(D) −→ F(D),
I �→ I ∗, satisfying the following properties for each a ∈ K\{0} and I, J ∈ F(D):

(∗1) (aD)∗ = aD; (aI )∗ = aI ∗;
(∗2) I ⊆ I ∗;
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(∗3) I ⊆ J ⇒ I ∗ ⊆ J ∗;
(∗4) (I ∗)∗ = I ∗.

The best known star-operation is the v-closure (or, the divisorial closure):

I �→ Iv := (I−1)−1,

where I−1 := {x ∈ K | xI ⊆ D}. A nonzero fractional ideal I is called divisorial
if I = Iv . The divisorial closure has a prominent position in this context; it is the
maximal star-operation in the sense that I ∗ ⊆ Iv for each I ∈ F(D) and each
star-operation ∗.

In Section 1, we point out some interesting analogies between the polynomial
closure and the divisorial closure. We observe that the divisorial closure of a frac-
tional ideal I can be defined in the same way as the polynomial closure is defined
just replacing the set of polynomials Int(I,D) by I−1X.

Motivated by this observation, we introduce a new star-operation, ClD(−),
which is constructed like the polynomial closure but using the set of polynomi-
als D[X/I ] := ⋂

a∈I\{0}D[X
a

] instead of Int(I,D). When D[X/I ] = Int(I,D)
(which happens, for example, whenever Int(D) = D[X]), obviously ClD(I) =
clD(I). In general, I−1X ⊆ D[X/I ] ⊆ Int(I,D), whence clD(I) ⊆ ClD(I) ⊆ Iv .

In Section 2, we prove that ClD(−) is equal to the divisorial closure in any
essential domains (Proposition 2.4). Moreover, ClD(−) has turned out to be an
useful tool to study the equivalence between the polynomial closure and the diviso-
rial closure in this class of domains. The study about the polynomial closure in this
direction was developed by M. Fontana et al. in [7]. They proved, for instance, that
in a valuation domain the polynomial closure and the divisorial closure of a frac-
tional ideal are the same. We prove, more generally, that these two closures coincide
in a large class of essential domains, the Krull-type domains, which include Krull
domains and semi-quasi-local Prüfer domains (Theorem 2.8).

1. A new star-operation ClD(−)

Let I be a nonzero fractional ideal of D and define I−1 = {x ∈ K | xI ⊆ D}.
Every D-homomorphism from I to D can be uniquely extended to a D-homo-
morphism from K to K . Henceforth, we identify HomD(I,D) with the subset of
HomD(K,K)mapping I intoD. For each f ∈ HomD(K,K), if we let a = f (1),
then f is the multiplication on K by a. Thus we have a canonical isomorphism of
D-modules

ϕ : I−1 −→ HomD(I,D)

defined by ϕ(a)(x) = ax for all a ∈ I−1 and x ∈ I . Note that each function ϕ(a)
is a polynomial function induced by the polynomial aX. By identifying I−1 with
HomD(I,D), we also have a canonical isomorphism

λ : Iv −→ HomD(HomD(I,D),D)

defined by λ(x)(f ) = f (x) for all x ∈ Iv and f ∈ HomD(I,D) [11, page 37].
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Thus we have Iv = {x ∈ K | f (x) ∈ D, ∀ f ∈ HomD(I,D)} = {x ∈ K |
f (x) ∈ D, ∀ f ∈ I−1X}. Recalling that clD(I) = {x ∈ K | f (x) ∈ D, ∀ f ∈
Int(I,D)}, we can see that the divisorial closure Iv is a sort of polynomial closure
obtained by substituting I−1X for Int(I,D). From the inclusion I−1X ⊆ Int(I,D),
it directly follows the fact that Iv ⊇ clD(I) [7, Corollary 1.3 (4)].

Another interesting analogy between the two types of closure is that as clD(I)
is the largest fractional ideal of D such that Int(I,D) = Int(clD(I),D), so Iv is
the largest fractional ideal of D such that HomD(I,D) = HomD(Iv,D).

Borrowing the above idea, that is, using a suitable subset of polynomials, we
will construct a new star operation later in this section. To begin with, we recall the
following result:

Lemma 1.1. [6, Lemma 4.5] Let D be a domain such that Int(D) = D[X]. Then,
for each nonzero D-submodule E of K , we have

Int(E,D) = D[X/E] :=
⋂

a∈E\{0}
D[
X

a
].

Moreover, D[X/E] is a graded ring of the following type

D[X/E] = D ⊕ (
⋂

u∈E\{0}

1

u
D)X ⊕ · · · ⊕ (

⋂

u∈E\{0}

1

un
D)Xn ⊕ · · · .

Let I be a nonzero fractional ideal of a domain D. We let I (n) denote the
D-module generated by the set {un | u ∈ I }.
Proposition 1.2. Let D be a domain such that Int(D) = D[X]. For I, J ∈ F(D),
clD(I) = clD(J ) if and only if I (n)v = J (n)v for each n ≥ 0.

Proof. From Lemma 1.1, Int(I,D) is a graded ring of the form

⊕

n≥0

(
⋂

u∈I\{0}

1

un
D)Xn.

Note that

⋂

u∈I\{0}

1

un
D = I (n)−1.

The same holds for Int(J,D). Thus, Int(I,D) = Int(J,D) if and only if I (n)−1 =
J (n)−1, that is, I (n)v = J (n)v for each n ≥ 0. ��

Remark 1.3. Let D be a domain such that Int(D) = D[X]. If I is a nonzero
fractional ideal of D, then by Lemma 1.1 and [1, Corollary 1, II.1.6], we have
the canonical isomorphisms
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HomD(Int(I,D),D) = HomD(D[X/I ],D)

= HomD(D ⊕ I−1X ⊕ · · · ⊕ I (n)−1Xn ⊕ · · · ,D)
∼=
∏

n≥0

HomD(I (n)
−1Xn,D)

∼=
∏

n≥0

HomD(I (n)
−1,D)

∼=
∏

n≥0

I (n)v.

Let θ : HomD(Int(I,D),D)−→∏
n≥0 I (n)v be the isomorphism defined by

the above series of natural isomorphisms and letψ : clD(I)−→HomD(Int(I,D),D)
be the injective map defined by ψ(x)(f ) = f (x) for all f ∈ Int(I,D). Then
the composite map θψ : clD(I) −→ ∏

n≥0 I (n)v is injective and it is given by
x �→ (1, x, x2, x3, . . . ). (For the better understanding, we describe the isomor-
phism θ−1 specifically: Let x = (x0, x1, x2, . . . ) ∈ ∏

n≥0 I (n)v . Then θ−1(x) is
given by f = ∑n

i=0 aiX
i �→ ∑n

i=0 aixi .)

Proposition 1.4. Let D be a domain such that Int(D) = D[X]. If I is a nonzero
fractional ideal of D, then

clD(I) = {x ∈ K | xn ∈ I (n)v, ∀ n ≥ 0}.
Proof. It follows from the map θψ mentioned above. Here is a more elementary
proof.

Let x ∈ clD(I). Since I (n)−1Xn ∈ Int(I,D) = D[X/I ], by the definition of
polynomial closure, I (n)−1xn ∈ D. Thus xn ∈ I (n)v for each n ≥ 0.

Conversely, let x ∈ K such that xn ∈ I (n)v for each n ≥ 0. Then I (n)−1xn ⊆
D. So, for an arbitrary polynomial f (X) = a0 + a1X+ · · ·+ anXn ∈ Int(I,D) =
D[X/I ] = ⊕

n≥0 I (n)
−1Xn, we have f (x) = a0 + a1x + · · · + anx

n ∈ D. Thus
x ∈ clD(I). ��

Motivated by Proposition 1.4, we define a new star-operation without the
assumption that Int(D) = D[X].

Definition 1.5. For a nonzero fractional ideal I of D, we set

ClD(I) := {x ∈ K | xn ∈ I (n)v, ∀ n ≥ 0}
= {x ∈ K | f (x) ∈ D, ∀ f ∈ D[X/I ]}.

Lemma 1.6. With the above notation, we have

(1) the map ClD(−) : F(D) → F(D), I �→ ClD(I), is a star-operation;
(2) for each I ∈ F(D), clD(I) ⊆ ClD(I) (the equality holds when Int(D) =

D[X]).

Proof. (1) It is an easy exercise to check that all the properties required for a
star-operation are satisfied.

(2) SinceD[X/I ] ⊆ Int(I,D), it is obvious that clD(I) ⊆ ClD(I). In particular,
if Int(D) = D[X], then Int(I,D) = D[X/I ] by Lemma 1.1 and hence clD(I) =
ClD(I). ��



Polynomial closure in essential domains 33

2. Polynomial closure and divisorial closure in essential domains

Let D be an integral domain with D = ⋂
P∈P DP for some subset P ⊆ Spec(D).

The P-polynomial closure of I ∈ F(D) is

P-clD(I) :=
⋂

P∈P
clDP (IDP ).

The mapping I �→ P-clD(I) defines a star-operation onDwith P-clD(I) ⊆ clD(I)
[7, Lemma 1.4].

In [7] M. Fontana et al. study the polynomial closure in essential domains
and compare it with other star-operations including the one just mentioned. In this
section, we carry on this studying.

We recall some relevant definitions. An essential domain is a domain D such
that

D =
⋂

P∈P
DP , (2.1)

where P ⊆ Spec(D) and eachDP is a valuation domain. A domainD is Krull-type
if it is essential and the intersection (2.1) is locally finite (that is, each nonzero
element x ∈ K is a unit in DP for all but finitely many P ∈ P), and a Krull-type
domain is strong Krull-type if the valuation domainsDP are pairwise independent
(that is, each pair of valuation domainsDP doesn’t have common overrings except
K) [9, §43].

By [7, Theorem 1.9], if D is an essential domain with the representation (2.1),
then we have

It ⊆ P-clD(I) ⊆ clD(I) ⊆ Iv

for each nonzero fractional ideal I . If D is strong Krull-type, then P-clD(I) =
clD(I) for each I ∈ F(D) and under some conditions on the set of t-maximal
ideals of D, clD(I) = Iv [7, Corollary 1.12]. We strengthen these results in the
following.

Remark 2.1. We will freely use the following facts:

(a) Let D be a domain, I an ideal of D and A an overring of D. Then, (A : I ) =
(A : IA).

(b) IfD = ⋂
λ∈� Dλ, whereDλ are overrings ofD, and I is a nonzero fractional

ideal of D, then

(D : I ) =
⋂

λ∈�
(Dλ : I ) =

⋂

λ∈�
(Dλ : IDλ).

(c) Let V be a valuation domain. Then
• each prime ideal P ⊆ V is divided, that is, P = PVQ for each prime ideal
Q of V such that P ⊆ Q [9, Theorem 17.6 (b)];

• a nonzero ideal I of V is invertible if and only if it is principal [9, Theorem
17.1 (1)]; moreover, if I is a prime ideal, then it is maximal [9, Theorem
17.3 (a)].
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Theorem 2.2. Let D = ⋂
P∈P DP , P ⊆ Spec(D), be a Krull-type domain. Then,

P-clD(I) = Iv for all I ∈ F(D) if and only if D is a strong Krull-type domain.

Proof. Let I be a nonzero integral ideal of the Krull-type domainD. We claim first
that

(D : I )DQ =
⋂

P∈P

(
(DP : I )DQ

)
(2.2)

for all Q ∈ P . The containment (D : I )DQ ⊆ ⋂
P∈P

(
(DP : I )DQ

)
is clear. For

the reverse inclusion, take ξ ∈ ⋂P∈P
(
(DP : I )DQ

) \ {0}. Then ξ is a unit in DP
for all but finitely many P ∈ P , say P1, . . . , Pr . Since ξ ∈ (DPi : I )DQ, there
exists si ∈ D \Q such that siξ ∈ (DPi : I ). Let s = s1 · · · sr . Then s ∈ D \Q and
sξI ⊆ DPi for all i = 1, . . . , r . It follows that sξI ⊆ ⋂

P∈P DP = D, whence
sξ ∈ (D : I ) and ξ ∈ (D : I )DQ.

Now assume thatD is a strong Krull-type domain. Since theDP ’s are pairwise
independent valuation domains, DPDQ = K for any two distinct prime ideals P
and Q in P . Thus we have

(D : I )DQ =
⋂

P∈P

(
(DP : I )DQ

) =
⋂

P∈P

(
(DP : I )DPDQ

)

= (DQ : I ) = (DQ : IDQ).

Therefore,

Iv = (D : (D : I )) =
⋂

P∈P
(DP : (D : I ))

=
⋂

P∈P
(DP : (D : I )DP ) =

⋂

P∈P
(DP : (DP : IDP ))

=
⋂

P∈P
(IDP )v =

⋂

P∈P
clDP (IDP )

= P-clD(I),

where the last second equality follows from [7, Proposition 1.8].
For the converse, we assume that P-clD(I) = Iv for each I ∈ F(D) but

D is not a strong Krull-type domain. For each distinct prime ideals P, Q in
P , let q(P,Q) be the prime ideal of D such that DPDQ = Dq(P,Q). In other
words, q(P,Q) is the prime ideal maximal among all prime ideals contained
in P ∩ Q. Note that q(P,Q) is (0) if and only if DP and DQ are indepen-
dent. Since D is not a strong Krull-type domain, there exists a prime ideal P0 ∈
P such that DP0 and DQ are dependent for some Q(�= P0) ∈ P . Put q :=⋃
Q∈P\{P0} q(P0,Q). Since DP0 is a valuation domain, the set of prime ideals

{q(P0,Q) | Q ∈ P \ {P0}} is linearly ordered by inclusion and hence q is a
nonzero prime ideal of D contained in P0. Moreover, since the intersection D =⋂
P∈P DP is locally finite, there exist finitely many prime ideals P1, . . . , Pn ∈ P

(n ≥ 1) such that q = q(P0, P1) = · · · = q(P0, Pn) and q � q(P0,Q) for all
Q ∈ P \ {P0, . . . , Pn}.
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Let a be a nonzero element of q. Then a is contained in only finitely many
prime ideals of P , say P0, . . . , Pn, Pn+1, . . . , Pn+m. Note that q �⊆ Pn+i for all
i = 1, . . . , m. Choose b ∈ q \ ⋃m

j=1 Pn+j and put I := (a, b)DP0 ∩ D. Then
IDP0 = (a, b)DP0 . For i = 1, . . . , n, we have

IDPi = (a, b)DP0DPi ∩DPi = (a, b)Dq ∩DPi = (a, b)Dq,

because (a, b)Dq ⊆ qDq = qDPi ⊆ DPi . For i = n+1, . . . , n+m, IDPi = DPi ,
because b ∈ I \Pi . For P ∈ P \ {P0, . . . , Pn+m}, IDP = DP , because a ∈ I \P .
Note that since DP0 is a valuation domain, IDP0 = (a, b)DP0 is principal, say
cDP0 (where c = a or b) and so (a, b)Dq = (a, b)DP0Dq = cDq . Then we
have

I−1 = (DP0 : IDP0) ∩
(

n⋂

i=1

(DPi : IDPi )

)

∩



⋂

P∈P\{P0,... ,Pn}
(DP : IDP )





= (DP0 : cDP0) ∩
(

n⋂

i=1

(DPi : cDq)

)

∩



⋂

P∈P\{P0,... ,Pn}
(DP : IDP )





= 1

c
DP0 ∩

(
n⋂

i=1

1

c
qDPi

)

∩



⋂

P∈P\{P0,... ,Pn}
DP





= 1

c



DP0 ∩
(

n⋂

i=1

qDPi

)

∩



⋂

P∈P\{P0,... ,Pn}
cDP









⊆ 1

c

(

qDq ∩
⋂

P∈P
DP

)

= 1

c
q,

where the last second inclusion follows from the fact qDPi = qDq ⊆ DPi ,
i = 1, . . . , n. Hence,

cq−1 ⊆ Iv = P-clD(I) ⊆ clDP0
(IDP0) = (IDP0)v = cDP0 .

Thus we have q−1 ⊆ DP0 , that is, (D : q)DP0 = DP0 . Meanwhile, by (2.2),

(D : q)DP0 =
⋂

P∈P

(
(DP : qDP )DP0

)

=
(

n⋂

i=0

(
(DPi : qDPi )DP0

)
)

∩



⋂

P∈P\{P0,... ,Pn}

(
(DP : qDP )DP0

)




=
(

n⋂

i=0

DqDP0

)

∩



⋂

P∈P\{P0,... ,Pn}
DPDP0





= Dq ∩



⋂

P∈P\{P0,... ,Pn}
Dq(P, P0)





= Dq,



36 M.H. Park, F. Tartarone

where the third equality follows from [5, Corollary 3.1.5] and [9, Theorem 7.6],
and the last equality follows from the fact that q(P, P0) ⊆ q for all P ∈ P \ {P0}.
Thus we have DP0 = Dq , which contradicts the fact that q � P0. ��

Corollary 2.3. If D is a strong Krull-type domain, then clD(I) = Iv for all I ∈
F(D).

Proposition 2.4. Let D = ⋂
P∈P DP be an essential domain. Then ClD(I) = Iv

for all I ∈ F(D).

Proof. Let I be a nonzero integral ideal of D. By Proposition 1.2, ClD(I) = Iv
if and only if (I (n))v = (Iv(n))v for all n ≥ 1. Put I ∗ := ⋂

P∈P IDP . Then
the mapping I �→ I ∗ defines a star-operation on D, whence I ⊆ I ∗ ⊆ Iv and
(I ∗)v = Iv [9, Theorem 32.5 and Theorem 34.1].

We claim that I (n)DP = InDP for all n ≥ 1 and all P ∈ P . Let a1, . . . , an ∈
I . Since DP is a valuation domain, we may assume that a1DP ⊇ a2DP ⊇ · · · ⊇
anDP . Then a1 · · · an ∈ a1

nDP ⊆ I (n)DP . Therefore InDP ⊆ I (n)DP . The
reverse inclusion I (n)DP ⊆ InDP is obvious.

Therefore,

I (n)∗ =
⋂

P∈P
I (n)DP =

⋂

P∈P
InDP = (In)∗,

and so we have

(Iv(n))v ⊇ (I (n))v = (
I (n)∗

)
v

= (
(In)∗

)
v

= (In)v = (
(Iv)

n
)
v

⊇ (Iv(n))v .

Thus I (n)v = (Iv(n))v for all n ≥ 1 and ClD(I) = Iv . ��

Corollary 2.5. Let D = ⋂
P∈P DP be an essential domain such that Int(D) =

D[X]. Then clD(I) = Iv for all I ∈ F(D).

Proof. This directly follows from Lemma 1.6 and Proposition 2.4. ��

Lemma 2.6. [4, Proposition 1.8 (b) and Corollary 1.9] Let D be a domain with
a nonzero divided prime ideal q. Then the map I �→ I

q
establishes a one-to-

one correspondence between the set of all the fractional ideals of D such that
q � I ⊆ Iv � Dq and the set of all the nonzero fractional ideals of D

q
. Furthermore,

if I ∈ F(D) such that q � I ⊆ Iv � Dq , then

(
I

q

)−1

= I−1

q
and

(
I

q

)

v

= Iv

q
.

Proposition 2.7. Let D be a semi-quasi-local Prüfer domain. Then clD(I) = Iv
for all I ∈ F(D).
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Proof. Let P1, . . . , Pn be the maximal ideals of D. We use the induction on n. If
n = 1, thenD is a valuation domain, so the conclusion follows from [7, Proposition
1.8] (or Corollary 2.3).

Assume that n > 1 and that the theorem holds for Prüfer domains with at most
(n−1)maximal ideals. By rearrangements, if necessary, we may assume that there
exists a positive integer r(≤ n) such thatDPi andDP1 are dependent for i ≤ r , and
DPi andDP1 are independent for i > r . Put S := ⋂r

i=1DPi and T := ⋂n
i=r+1DPi

(where T := K , if r = n). So D = S ∩ T . Note that they are Prüfer domains with
r and n− r maximal ideals, respectively [9, Theorem 22.8].

Case 1. Assume that r < n. By induction hypothesis, the theorem holds for S
and T . So, in particular, for each nonzero integral ideal I of D, clS(IS) = (IS)v
and clT (IT ) = (IT )v . Since S = DS0 and T = DT0 for the multiplicative sub-
sets S0 = D \ ⋃r

i=1 Pi and T0 = D \ ⋃n
i=r+1 Pi [9, Lemma 5.4], we have that

clS(IS) = clS(I ) and clT (IT ) = clT (I ) [3, Lemma 3.4]. So (IS)v = clS(I ) and
(IT )v = clT (I ).

We observe that ST = K . Actually, since q(P1, Pi) �= (0) for all i ≤ r and
q(P1, Pj ) = (0) for all j ≥ r+1, we have q(Pi, Pj ) = (0) for i ≤ r and j ≥ r+1.
(Here, we use the same notation as in the proof of Theorem 2.2.) This implies that
there does not exist nonzero prime ideals q ofD such that ST ⊆ Dq , and hence by
[9, Theorem 26.1], ST = K . Therefore,

(D : I )S = (D : I )DS0 = ((S : I ) ∩ (T : I ))DS0

= (S : I )DS0 ∩ (T : I )DS0 = (S : I ) ∩ (T : I )T S

= (S : I ) = (S : IS),

and similarly,

(D : I )T = (T : I ) = (T : IT ).

Thus we have

Iv = (D : (D : I )) = (S : (D : I )) ∩ (T : (D : I ))

= (S : (D : I )S) ∩ (T : (D : I )T ) = (S : (S : IS)) ∩ (T : (T : IT ))

= (IS)v ∩ (IT )v = clS(I ) ∩ clT (I )

= clDS0
(I ) ∩ clDT0

(I ) ⊆ clD(I),

where the last inclusion follows from [2, Lemma IV.2.1]. Hence Iv = clD(I).
Case 2. Assume that r = n, so that q(P1, Pi) �= (0) for each i = 2, . . . , n. Let

q := ⋂n
i=2 q(P1, Pi). Then q is a nonzero prime ideal ofD and q = q(P1, Pj ) for

some j ≥ 2. Without loss of generality, we may assume that q = q(P1, Pn). Since
q is contained in all the maximal ideals ofD, q is a divided ideal, that is, qDq = q

(in fact, qDq = qDPi for all i = 1, . . . , n, whence qDq = ⋂n
i=1 qDPi = q).

So, for each nonzero integral ideal I of D, I and q are comparable. In fact, if
I � q, then IDPi � qDPi , for all i = 1, . . . , n. AsDPi being a valuation domain,
q = qDPi ⊆ IDPi for all i = 1, . . . , n, whence q ⊆ ⋂n

i=1 IDPi=I .
Case 2.1. Assume that q � I . Then by Lemma 2.6, ( I

q
)v = Iv

q
. Note that D

q

is a semi-quasi-local Prüfer domain with n-maximal ideals P1
q
, · · · , Pn

q
. Moreover,
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(D
q
) P1
q

∼= DP1
q

and (D
q
) Pn
q

∼= DPn
q

are independent. So, by Case 1, ( I
q
)v = clD

q
( I
q
).

Since q is nonmaximal, q has infinite residue field, whence Int(D) ⊆ Dq [X] [2,
Proposition I.3.4]. Therefore, by [7, Proposition 3.2], clD

q
( I
q
) = clD(I)

q
. Thus we

have

Iv

q
= (

I

q
)v = clD

q
(
I

q
) = clD(I)

q
,

and hence Iv = clD(I).
Case 2.2. Assume that I ⊆ q and IDq is not a principal ideal of Dq , hence it

is not invertible. Then II−1 ⊆ IDq(IDq)
−1 ⊆ qDq = q. So,

(IDq)
−1 ⊆ (q : IDq) ⊆ (q : I ) ⊆ (D : I ) = I−1 ⊆ (IDq)

−1.

Thus we have (IDq)−1 = (q : I ) = I−1. Since InDq is not invertible for all n ≥ 1,
similarly we have

(InDq)
−1 = (Dq : InDq) = (D : In) = (In)−1.

Then, by the same argument used in the proof of Proposition 2.4, I (n)Dq = InDq
and so

I (n)−1 = (D : I (n)) ⊆ (Dq : I (n)Dq) = (Dq : IDq(n))

= (Dq : InDq) = (D : In) = (In)−1 ⊆ I (n)−1.

Now we claim that Int(I,D) = D[X/I ]. By [6, Lemma 4.5] and [3, Lemma
3.4],

D[X/I ] ⊆ Int(I,D) ⊆ Int(I,Dq) = Int(IDq,Dq).

Since Int(Dq) = Dq [X], again by [6, Lemma 4.5], Int(IDq,Dq) = Dq [X/IDq ].
From the above equations, it follows that

Dq [X/IDq ] =
⊕

n≥0

(IDq(n))
−1Xn

= Dq ⊕
⊕

n≥1

I (n)−1Xn

= Dq +D[X/I ].

Thus we have

D[X/I ] ⊆ Int(I,D) ⊆ Dq +D[X/I ].

But, Int(I,D) ∩K = D, so that Int(I,D) = D[X/I ].
Therefore, clD(I) = ClD(I), and hence clD(I) = Iv by Proposition 2.4.
Case 2.3. Assume that I ⊆ q, IDq = aDq for some a ∈ I , but Iv �= aDq . Put

J := a−1I . Then since D ⊆ J ⊆ Jv � Dq , J
q

is a nonzero fractional ideal of D
q

.
By the same argument as in Case 2.1, we have Jv = clD(J ), from which it follows
that Iv = clD(I).
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Case 2.4. Assume that I ⊆ q, IDq = aDq for some a ∈ I , and Iv = aDq .
Put J := a−1I . Then Jv = Dq , and hence by Lemma 2.6, J

q
and Jv

q
are not

fractional ideals of D
q

. Since D
q

is a Prüfer domain, it is integrally closed and so

Int( J
q
, D
q
) = D

q
= Int( Jv

q
, D
q
) by [2, Proposition I.1.9]. Moreover,

q[X] ⊆ D[X/Dq ] ⊆ Int(Dq,D) = Int(Jv,D) ⊆ Int(J,D)

⊆ Int(J,Dq) = Int(JDq,Dq) = Int(Dq) = Dq [X].

Considering the canonical map

� : Dq [X] → (
Dq

qDq
)[X] = (

Dq

q
)[X],

we have

Int(Jv,D)

q[X]
= �(Int(Jv,D)) ∼= Int(

Jv

q
,
D

q
) = D

q

and

Int(J,D)

q[X]
= �(Int(J,D)) ∼= Int(

J

q
,
D

q
) = D

q

by [2, Proposition I.3.8 and Remark I.3.9] and [7, Lemma 3.1].Therefore, Int(Jv,D)
= D + q[X] = Int(J,D), which implies that Jv = clD(J ). Therefore, Iv =
clD(I). ��
Theorem 2.8. Let D = ⋂

P∈P DP be a Krull-type domain. Then clD(I) = Iv for
all I ∈ F(D).

Proof. Let I be a nonzero proper integral ideal of D. Then I is contained in only
finitely many prime ideals P1, . . . , Pn in P . Put S := ⋂n

i=1DPi and
T := ⋂

P∈P\{P1,... ,Pn}DP . (We may assume that P \{P1, . . . , Pn} �= ∅, other-
wise D = S is a semi-quasi-local Prüfer domain, so the conclusion follows from
Proposition 2.7.) So D = S ∩ T .

Notice that (T : I ) = T . In fact,

(T : I ) =
⋂

P∈P\{P1,... ,Pn}
(DP : I ) =

⋂

P∈P\{P1,... ,Pn}
(DP : IDP )

=
⋂

P∈P\{P1,... ,Pn}
DP = T .

We claim that (D : I )S = (S : I ). Put S0 := D \⋃n
i=1 Pi . Then S = DS0 , and

(D : I )S = ((S : I ) ∩ (T : I )) S = ((S : I ) ∩ T )DS0

= (S : I )DS0 ∩ TS0 = (S : I ) ∩ TS0 .

Since (S : I ) ⊆ (ST : I ) = (TS0 : I ), to get the equality (D : I )S = (S : I ) it
suffices to show that (TS0 : I ) = TS0 . By the local finiteness of the intersection T =⋂
P∈P\{P1,... ,Pn}DP , it follows that TS0 = ⋂

P∈P\{P1,... ,Pn}(DP )S0 [9, Proposition
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43.5]. Moreover, each DP is a valuation domain, so (DP )S0 = Dq(P ) for some
prime ideal q(P ) contained inP . Note that I �⊆ q(P ) for allP ∈ P \{P1, . . . , Pn}.
Therefore,

(TS0 : I ) =
⋂

P∈P\{P1,... ,Pn}
(Dq(P ) : I ) =

⋂

P∈P\{P1,... ,Pn}
Dq(P ) = TS0 .

Thus we have

Iv ⊆ IvS = (D : (D : I ))S ⊆ (S : (D : I )S)

= (S : (S : I )) = (IS)v = clS(IS) = clS(I ),

where the last second equality follows from Proposition 2.7. Also, observe that

Int(I, T ) =
⋂

P∈P\{P1,... ,Pn}
Int(I,DP ) =

⋂

P∈P\{P1,... ,Pn}
Int(IDP ,DP )

=
⋂

P∈P\{P1,... ,Pn}
Int(DP ) = Int(T ),

where the last equality follows from [2, Proposition I.2.5]. In particular, this
observation implies that Int(I, T ) = Int(Iv, T ), because Int(T ) ⊆ Int(Iv, T ) ⊆
Int(I, T ).

Finally, we get

Int(I,D) = Int(I, S) ∩ Int(I, T ) = Int(clS(I ), S) ∩ Int(Iv, T )

⊆ Int(Iv, S) ∩ Int(Iv, T ) = Int(Iv,D) ⊆ Int(I,D).

Thus Int(I,D) = Int(Iv,D), and hence clD(I) = Iv . ��
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