Geometry of genus 8 Nikulin surfaces and rationality of moduli

In honour of Alberto Collino

Alessandro Verra

Torino 4 febbraio 2016

1. Nikulin surfaces in low genus

- Nikulin surface of genus g: a complex K3 surface S endowed with
 a¹ polarization C of genus g,
 - a line bundle $\mathcal{M} := \mathcal{O}_{\mathcal{S}}(M)$ so that $2M \sim N$
 - and N is the disjoint union of 8 copies of \mathbf{P}^1 .
- ▶ The irreducible components of the moduli space have dimension 11 and are essentially characterized by < C, M >.²
- Further assumption in this talk:

$$< \mathcal{C}, \mathcal{M} >= 0.$$

This defines an integral component of the moduli, unique for

$$g \equiv 0 \mod 4.$$

¹ big and nef

²Cfr. Garbagnati-Sarti, Sarti-van Geemen and then Huybrechts book 🛛 🕻 🗆 भ 🖉 🕨 र 📱 भ र 📱 भ 🖉 🖉 🔍

- We have $2M \sim N_1 + \cdots + N_8$ with $N_k = \mathbf{P}^1$ and $N_i N_j = -2\delta_{ij}$.
- ► $N := N_1 + \cdots + N_8$ defines the double covering $\pi' : \tilde{S}' \to S$ branched on N and the commutative diagram

u is the contraction of N ³ and \tilde{S} is a minimal K3 surface.

• π is the quotient map of a symplectic involution $\iota : \tilde{S} \to \tilde{S}$ branched exactly on the even set of nodes

$$\{o_1 := \nu(N_1), \ldots, o_8 := \nu(N_8)\} = \operatorname{Sing} \overline{S}$$

³Let $E_i = \pi'^{-1}(N_i), i = 1 \dots 8$, then E_i is an exceptional line on the smooth surface \tilde{S}' . It turns out that ν' is the contraction of $E_1 + \dots + E_8$

Notations:

•
$$\mathcal{F}_g := \mathsf{moduli} \mathsf{ of genus } g \mathsf{ K3 surfaces } (S, \mathcal{C}),$$

 $\circ \ \mathcal{F}_{g}^{N} :=$ moduli of genus g Nikulin surfaces $(S, \mathcal{C}, \mathcal{M})$.

▶ For a general $[S, C, M] \in \mathcal{F}_g^N$ one has

$$\operatorname{Pic} S = \mathbb{Z}[\mathcal{C}] \perp \mathbb{L}_S,$$

where \mathbb{L}_{S} is generated by $\mathcal{M}, \mathcal{O}_{S}(N_{1}), \dots, \mathcal{O}_{S}(N_{8})$.⁴

With a slight abuse we can say that

$$\mathcal{F}_g^{\mathsf{N}} \subset \mathcal{F}_g$$

⁴As an abstract lattice \mathbb{L}_S is known as the Nikulin lattice.

► Clearly:

$$\mathcal{F}_g^N \subset \mathcal{D}_g \subset \mathcal{F}_g.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

- ► In low genus *F^N_g* sits in a fascinating system of relations to other geometric families. We present some work in progress about. ⁵
- For g ≤ 10 it seems interesting to study Mukai constructions for a Nikulin surface.
- The unirationality of \mathcal{F}_g^N is known for $g \leq 7^6$ We prove here:

⁵Part of it jointly with A. Garbagnati

⁶Farkas-Verra to appear in Advances of Math.

► Theorem (1)

 \mathcal{F}_8^N is rational. ⁷

► Theorem (2)

\mathcal{D}_8 is birational to $\mathbf{P}^{14} \times \mathcal{P}_6$.

- \mathcal{P}_6 denotes the moduli space of six unordered points of \mathbf{P}^2 .
- Its rationality is an unknown, apparently difficult, problem.
- A natural question: is \mathcal{F}_g^N rational for $g \leq 7$?

⁷— to appear in K3 surfaces and their moduli Proceedings Schirmonnikoog 2014 🗇 🔸 🛓 🔹 🛓 🔗 ۹. 🖓

- There is a beautiful geometry behind theorems 1 and 2 we want to discuss during this talk.
- Further notations for $[S, C, M] \in D_g$, $g \ge 3$:

$$\circ \ \mathcal{H} := \mathcal{C}(-M)$$
 and $\mathcal{A} := \mathcal{C}(-2M)$, moreover

$$\circ \quad C \in |\mathcal{C}|, \ H \in |\mathcal{H}|, \ A \in |\mathcal{A}|, \ ^8.$$

- ► For a general $[S, C, M] \in \mathcal{F}_g^N$ the map $f_C \times f_H$ defines an embedding $S \subset \mathbf{P}^g \times \mathbf{P}^{g-2}$.
- For a general [S, C, M] ∈ D_g, C and H are very ample as soon as their genus is ≥ 3.

^oprovided these linear systems are not empty.

For a general [S, C, M] ∈ F^N_g we have:
 f_H(S) = S and f_H(N_i) is a line.

•
$$f_{\mathcal{C}}(S) = \overline{S}$$
 and $f_{\mathcal{C}}(N_i)$ is a node.

• The next characterization of \mathcal{F}_g^N in \mathcal{D}_g is useful: ⁹

Proposition

Let $[S, \mathcal{C}, \mathcal{M}] \in \mathcal{D}_g$, the following conditions are equivalent:

•
$$[\mathcal{S},\mathcal{C},\mathcal{M}]\in\mathcal{F}_{g}^{N}$$
,

◦ \exists $N_1 \dots N_8$ disjoint copies of \mathbf{P}^1 / $HN_i = 1$, $AN_i = 2$.

$$g^{9} \equiv 0 \mod 4$$

Finally we fix the projective models

 $S \subset \mathbf{P}^{g-2}$

defined by \mathcal{H} and

 $\overline{S} \subset \mathbf{P}^g$

defined by C.

►

• We also recall that C is Prym canonically embedded by \mathcal{H} . ¹⁰

• We start with the geometry of \mathcal{F}_g^N for $g \leq 7$.

 $^{{}^{10}\}eta_C := \mathcal{O}_C(-M) \text{ is non trivial of 2-torsion in Pic C so that } \mathcal{O}_C(H) \cong \omega_{\overline{C}} \otimes \eta_{\overline{C}} \implies \langle \overline{z} \rangle \land \langle \overline{z} \rangle \land$

- As a kind of nice examples we consider the cases g = 4, 6, 7.
- g = 4. Let B ⊂ P⁴ be a rational normal quartic and V := Sec B. One has a quasi-étale double covering

$$\pi: \tilde{V} \to V$$

branched on $B = Sing V^{11}$. One can show that:

Proposition

A general model \overline{S} of genus 4 is a quadratic section of V.¹²

▶ It follows that $\mathcal{F}_4^N \cong |\mathcal{O}_V(2)| / Aut B$ which is rational.

¹¹ $\tilde{V} := \{ (x, l) \in B \times V / x \in l \cap B \}$

¹²In particular Sing $\overline{S} = \text{Sing } V \cap \overline{S} = B \cap \overline{S}$.

g = 6. Let *Q* ⊂ P⁴ be a smooth quadric, the tangential quadratic complex of *Q* is

 $W := \{I \in G(2,5) / I \text{ is tangent to } Q\}.$

W is endowed with the quasi-étale double covering

 $\pi: \tilde{W} \to W$

13/47

branched on Sing W = the Veronese embedding of \mathbf{P}^3 in $G(1,4) \subset \mathbf{P}^9$. One can show that:

Proposition

A general model \overline{S} of genus 6 is a linear section of W.

• It follows that \mathcal{F}_6^N is unirational.

- g = 7. Consider the model S ⊂ P⁵ defined by H: S is the base locus of a net of quadrics.
- Choosing $N_1 \dots N_7$ it turns out that $C \sim C_o := R + N_1 + \dots + N_7$, with R a rational normal quintic.
- C_o is the union of R and seven bisecant lines to it.
- Starting from a curve C_o, this curve uniquely defines a net of quadrics and hence its base locus S.
- Moreover S turns out to be a general Nikulin surface of genus 7 endowed with an eighth line disjoint from R.

Proposition

The moduli space $\tilde{\mathcal{F}}_7^N$ of curves C_o is rational and has a map of degree 8

$$f: \tilde{\mathcal{F}}_7^N \to \mathcal{F}_7^N.^{13}$$

¹³Actually $\tilde{\mathcal{F}}_{7}^{N}$ is the moduli of fourtuples (S, C, \mathcal{M}, N_i) such that (S, C, \mathcal{M}) is a Nikulin surface of genus 7 and N_i is one of the lines in $S \subset \mathbf{P}^5$. The rationality of \mathcal{F}_{7}^{N} is not clear.

2. Nikulin surfaces of genus 8 and rational normal sextics

• Let g = 8 and $[S, C] \in D_8$ be general, we have an embedding

$$S \subset \mathbf{P}^6$$

with hyperplane sections $H \sim C - M$ of genus 7.

For
$$g = 8$$
 we have $(C - 2M)^2 = -2$ and $(C - 2M)H = 6$.

Proposition

h

Let $A \in |C - 2M|$ and $[S, C, M] \in \mathcal{F}_8^N$ general. Then A is a smooth, integral rational normal sextic spanning \mathbf{P}^6 .¹⁴

Proposition

For a general $[S, C, M] \in \mathcal{F}_8^N$ the lines $N_1 \dots N_8$ are disjoint bisecant lines to A contained in S.

¹⁴Then the same is true by semicontinuity on \mathcal{D}_8 .

- ▶ The Mukai-Brill-Noether theory is known for $[X, \mathcal{O}_X(1)] \in \mathcal{F}_6^{15}$:
 - CASE 1:
 - If a smooth $H \in |\mathcal{O}_X(1)|$ is not trigonal nor biregular to a plane quintic, then H is generated by quadrics.
 - \exists ! *H*-stable rank 2 vector bundle \mathcal{E} on *X* such that:

(i) det $\mathcal{E} \cong \mathcal{O}_X(1)$; (ii) $h^0(\mathcal{E}) = 5$ and $h^i(\mathcal{E}) = 0$ for $i \ge 1$; (iii) det : $\wedge^2 H^0(\mathcal{E}) \to H^0(\mathcal{O}_{\mathbf{P}^6}(1))$ is surjective.

¹⁵For simplicity we assume that $\mathcal{O}_X(1)$ is very ample

Let G(1,4) ⊂ P⁹ := P ∧² H⁰(E)^{*} be the Plücker embedding of the Grassmannian of lines of PH⁰(E)^{*}. Then the diagram

commutes, where $\delta := det^*$, the vertical maps are the inclusions and $f_{\mathcal{E}}$ is the embedding defined by \mathcal{E} .

Up to obvious identifications we can say that

$$X \subset T := \mathbf{P}^6 \cap G(1,4) \subset \mathbf{P}^9.$$

Mukai theory in genus 6 says also that:

(iv) X is a quadratic section of T,

- Since X is a smooth quadratic section of T, T is an integral threefold linear section of G(1, 4) with isolated singularities.
- Actually T is a smooth Del Pezzo threefold of degree 5 if X is sufficiently general.

- CASE 2:
 - Assume *H* is either trigonal or biregular to a plane quintic. Then *H* has Clifford index 1 and the following property holds true:
 - there exists an integral curve $D \subset X$ such that either DH = 3and $D^2 = 0$ or DH = 5 and $D^2 = 2$.
- ▶ A general genus 8 Nikulin surface occurs in case (1), not in (2).

Proposition

Let $S \subset \mathbf{P}^6$ be a general Nikulin surface of genus 8 embedded by $f_{\mathcal{H}}$. Then S is a quadratic section of a threefold T as above. ¹⁶

¹⁶PROOF Pic *S* is the orthogonal sum of rank 9 $\mathbb{ZL} \oplus \mathbb{L}_S$, where \mathbb{L}_S is the Nikulin lattice generated by $\mathcal{O}_S(M), \mathcal{O}_S(N_1) \dots \mathcal{O}_S(N_8)$. A standard computation we omit, shows that no divisor *D* exists such that $D^2 = 0$ and DH = 3 or $D^2 = 2$ and DH = 5. This excludes case (2).

With A and S ⊂ T = P⁶ ∩ G(1,4) ⊂ P⁹ as above, qnd under the previous generality assumptions, we study the restriction

$$\mathcal{E}_A := \mathcal{E} \otimes \mathcal{O}_A$$

of the Mukai bundle \mathcal{E} and discuss the possible cases. Of course we have $\mathcal{E}_A = \mathcal{O}_{\mathbf{P}^1}(m) \oplus \mathcal{O}_{\mathbf{P}^1}(n)$ with m + n = 6.

Proposition

One has
$$m, n \ge 0$$
 so that $h^0(\mathcal{E}_A) = 8$ and $h^1(\mathcal{E}_A) = 0$.

¹⁷PROOF Consider the commutative diagram

$$\begin{array}{ccc} \wedge^2 H^0(\mathcal{E}) & \stackrel{\wedge^2 r}{\longrightarrow} & \wedge^2 H^0(\mathcal{E}_A) \\ \\ det & \downarrow & det_A \\ \\ H^0(det \ \mathcal{E}) & \stackrel{r}{\longrightarrow} & H^0(det \ \mathcal{E}_A) \end{array}$$

The restriction r is an isomorphism and det is surjective. This implies $m, n \ge 0$: otherwise det_revold be zero. = -9.9

Now we consider the tautological map

$$u_A: \mathbb{P}_A \to \mathbf{P}^7 := \mathbf{P} H^0(\mathcal{E}_A)^*$$

of the ruled surface $\mathbb{P}_A := \mathbf{P}\mathcal{E}_A^*$.

Then

$$R:=u_A(\mathbb{P}_A).$$

is a rational normal scroll of degree 6.

The next standard exact sequence will be crucial:

$$0
ightarrow \mathcal{E}(-A)
ightarrow \mathcal{E}
ightarrow \mathcal{E}_A
ightarrow 0.$$

The associated long exact sequence is the following:

$$0 o H^0(\mathcal{E}) o H^0(\mathcal{E}_A) \stackrel{\delta_A}{ o} H^1(\mathcal{E}(-A)) o 0.$$

In particular one has

•
$$h^{0}(\mathcal{E}) = 5,$$

• $h^{0}(\mathcal{E}_{A}) = 8,$
• $h^{1}(\mathcal{E}(-A)) = 3.$ ¹⁸

▶ The coboundary map $\partial_A : H^0(\mathcal{E}_A) \to H^1(\mathcal{E}(-A))$ defines a plane

$$P_A := \mathbf{P} Im \ \partial_A^* \subset \mathbf{P}^7.$$

¹⁸PROOF Since $\mathcal{E}(-A)$ is *H*-stable and H(H - 2A) < 0, it follows $h^0(\mathcal{E}(-A)) = 0$. Furthermore we know that $h^i(\mathcal{E}) = 0$ for $i \ge 1$ and we have $h^1(\mathcal{E}_A) = 0$ because $m, n \ge 0$. This implies the statement A = 0.

Let P⁴ := PH⁰(𝔅)^{*}. Dualizing the sequence and projectivizing we define the linear projection of center P_A:

$$\alpha_A: \mathbf{P}^7 \to \mathbf{P}^4 := \mathbf{P} H^0(\mathcal{E})^*.$$

Furthermore we have the commutative diagram

where the vertical arrows are the tautological maps.

- ► The constructions holds true for a general element of D₈, not only in the Nikulin case.
- We will profit of this construction in the next section, where the very special feature of the projection α_A will be described.

• Let G(1,7) be the Grassmannian of lines of $\mathbf{P}H^0(\mathcal{E}_A)^*$. Then

$$I \longrightarrow \alpha_A(I), I \in G(1,7)$$

defines a linear projection

$$\lambda_A: G(1,7) \rightarrow G(1,4).$$

▶ The next diagram is commutative:

$$\begin{array}{ccc} G(1,7) & \xrightarrow{\lambda_A} & G(1,4) \\ f_{\mathcal{E}_A} \uparrow & & f_{\mathcal{E}} \uparrow \\ A & \xrightarrow{i} & S \end{array}$$

Theorem For a general Nikulin surface of genus 8 one has

 $\mathcal{E}_A = \mathcal{O}_{\mathbf{P}^1}(3) \oplus \mathcal{O}_{\mathbf{P}^1}(3).$

19

¹⁹PROOF We have $\mathcal{E}_A = \mathcal{O}_{\mathbf{p}1}(m) \oplus \mathcal{O}_{\mathbf{p}1}(n)$ with $0 \le m \le n \le 6$ and m + n = 6. It suffices to show that R is not a cone and that no rational section of degree 1 or 2 is contained in it. This implies m = 3. To this purpose consider the projected scroll $R' = \alpha_A(R)$. Since A is embedded in G(1, 4) as an integral sextic curve, the degree of R' is six. For any integral variety $Y \subset \mathbf{P}^4$ we denote by $\sigma_{\mathbf{V}}$ the variety in $\mathcal{G}(1,4)$ parametrizing the lines intersecting Y. Let us exclude the cases $0 \le m \le 2$. m = 0. Then the scroll R' is a cone of vertex o and A is contained in σ_0 . But σ_0 is a linear space of dimension four and A would be a degenerate curve in it, which is excluded. m = 1. In this case R' contains a line L intersecting every line of its ruling. Consider σ_l : it is well known that σ_I is a cone of vertex a point I over the Segre embedding $\mathbf{P}^1 \times \mathbf{P}^2 \subset \mathbf{P}^5$. Since $A \subset \sigma_I$ it follows that $\sigma_{I} \subset \mathbf{P}^{6} = \langle A \rangle$. Moreover \mathbf{P}^{6} is the linear space tangent to G(1, 4) at the parameter point of L. But then $T = \sigma_1$; a contradiction, m = 2. We can assume that R' contains a smooth conic K intersecting all the lines of the ruling of R'. Let P be the supporting plane of K, then S is contained in the codimension 1 Schubert cycle σ_P . This is endowed with a ruling of 4-dimensional smooth quadrics having the dual plane P^* as the base locus. Every element of such a ruling is the Plücker embedding of the Grassmannian of the lines contained in a hyperplane through P. Notice also that Sing $\sigma_P = P^*$. Then, since S is a smooth complete intersection of three hyperplane sections of G(1,4) and of a quadric section, it follows that $S \cap P^* = \emptyset$. But then this ruling of quadrics of σ_P cuts on S a base point free pencil |D| such that $D^2 = 0$ and DH = 4. This is excluded again by a standard computation in the Picard lattice of a general Nikulin surface. 소리가 소리가 소문가 소문가

3. Nikulin surfaces of genus 8 and symmetric cubic threefolds

A symmetric cubic threefold is a cubic hypersurface

$$V:=\{det(a_{ij})=0\}\subset \mathbf{P}^4,$$

where $a_{ij} = a_{ji}$ are linear forms.

- ▶ We assume dim < a_{ij} >= 6 so that V = Sec B, B a rational normal quartic curve.
- ▶ The family of bisecant lines to *B* is a 3-Veronese embedding

 $W \subset G(1,4)$

28 / 47

embedded as a congruence of class (3, 6).

• Since \mathcal{E}_A is balanced then $\mathbf{P}\mathcal{E}^*_A = \mathbf{P}^1 \times \mathbf{P}^1$ and

$$R := u_A(\mathbf{P}\mathcal{E}_A^*) \subset \mathbf{P}^7 = \mathbf{P}H^0(\mathcal{E}_A)^*$$

is the image of $|\mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(1,3)|$.

- R is a rational normal sextic scroll: we fix it once at all.
- Restricting to R the top arrow of the previous diagram

We obtain a linear projection

$$\alpha: R \to \mathbf{P}^4.$$

 $\blacktriangleright \alpha$ is a finite morphism of degree 1 onto its image. Let

 $Z \subset R$

be the subscheme of points where α is not an embedding. Then

$$\ell(Z) = 12$$

by double point formula.

In other words R has six apparent ordinary double points if α is a sufficiently general projection in P⁴.

- This is actually not the case for simple geometric reasons:
- ▶ A has 8 bisecant lines $N_1 \dots N_8 \subset S \subset G(1,4)$ in the Nikulin case,
- $\alpha(R)$ is the projection in \mathbf{P}^4 of the universal line over A:

$$\mathbf{P}_{A} := \{ (x, l) \in \mathbf{P}^{4} \times G(1, 4) \ / \ x \in l \},\$$

- ▶ N_i parametrizes a pencil of lines in \mathbf{P}^4 of center say n_i ,
- ▶ the fibre of \mathbf{P}_A at $N_i \cap A$ is the disjoint union of two lines of N_i .
- Hence:

$$\operatorname{Sing} \alpha(R) \supseteq \{n_1 \dots n_8\} \; !$$

► Theorem

• Sing $\alpha(R)$ is a rational normal quartic B,

• $\alpha(R)$ is a fake K3 surface of genus 4:

$$\circ$$
 let $V = Sec B$ then

$$lpha(R)=Q\cap V, \ \ Q\in |\mathcal{I}_{B/\mathbf{P}^4}(2)|.$$

- So far A is defined by a special embedding α : P¹ → G(1,4) of degree 6:
- ► $< A > \cap G(1,4) = T$ as for every rational normal sextic,
- but $A = W \cap T$, where $W = \mathbf{P}^2$ embedded with class (3,6).
- A special feature: A has a 1-dimensional family

 $E_A := \{ \text{lines } N \text{ such that } N \subset A \cap G(1,4) \}.$

- More geometry of the special embeddings α : P¹ → A ⊂ G(1,4):
- ▶ The family *E*_A is an elliptic curve.²⁰
- ► A defines a second fake surface of genus 6, namely

$$S_A = \bigcup N, \ N \in E_A.$$

► $S_A \in |\mathcal{I}_{A/T}(2)|$, actually $Sing_A = A$.

²⁰Naturally embedded as a curve of type (2,2) in $B \times B$.

• The family of special embeddings α modulo Aut(G(1,4)) is

$$|\mathcal{I}_{B/V}(2)|/Aut B = |\mathcal{O}_{\mathbf{P}^{1}[2]}(2)|/Aut \mathbf{P}^{1}$$

that is a rational surface we will denote by

Σ.

- The considered Nikulin surface S belongs to $|\mathcal{I}_{A/T}(2)|$.
- A general $S' \in |\mathcal{I}_{A/T}(2)|$ is a smooth Nikulin surface.
- Proof: $S' = Q' \cap T$ and

$$Q'\cdot S_A=2A+N_1'+\cdots+N_8',$$

 N'_i a bisecant line to A.

- ▶ Let $\alpha \in \mathbf{P}^5 := |\mathcal{I}_{B/V}(2)|$, we denote by $\alpha : \mathbf{P}^1 \to G(1, 4)$ the corresponding sextic embedding and put $A = \alpha(\mathbf{P}^1)$:
- ▶ From the previous remarks and construction one has a **P**⁹-bundle

$$\pi: \mathbb{P} \to \mathbf{P}^5$$
 (21)

with fibre at α the linear system of Nikulin surfaces $|\mathcal{I}_{A/T}(2)|$.

With some more elaboration:

- The natural map $\mathbb{P}/Aut \ B \to \mathcal{F}_8^N$ is birational.
- $\mathbb{P}/Aut B$ is birational to $\mathbf{P}^9 \times \Sigma$.

We have sketched the proof that

Theorem

The moduli space of genus 8 Nikulin surfaces is rational.

- ► A Mukai construction, in some sense, for the model \overline{S} of a general Nikulin surface of genus 8 seems also available:
- Consider the rational map

$$f: T \rightarrow \mathbf{P}^9$$

defined by $\mathcal{I}_A(2)$. Let \overline{T} be the birational image of f, possibly:

$$\overline{T} = \mathbf{P}^9 \cap G(1,5).$$

22

► f contracts S_A to a copy of the elliptic curve E_A spanning a hyperplane:

• Sing
$$\overline{T} = E_A$$
.

- ► Which cubic 3-fold is 'naturally' birational to the Fano 3-fold T? It should be Sec B.
- One hopes for further progress on Mukai realizations of Nikulin surfaces for g = 9, 10²³

4. Rational normal sextics, 6-nodal cubic 3-folds and \mathcal{D}_8

• It is time to consider a general $[S, C, M] \in D_8$:

- ► the construction considered for $[S, C, M] \in \mathcal{F}_8^N$ yelds $A \subset S \subset T = \mathbf{P}^6 \cap G(1, 4) \subset \mathbf{P}^9$,
- but this time the commutative diagram

defines a generic linear projection

$$\alpha: R \to \mathbf{P}^4$$

of center the plane P_A .²⁴

²⁴As above $R = u_A(\mathbf{P}\mathcal{E}_A^*)$ and $\alpha := \alpha_A/R$.

<ロ > < 回 > < 回 > < 直 > < 直 > < 直 > < 三 > < 三 > < 三 / へ (~ 40 / 47

We have:

• Sing $\alpha(R) = \{o_1 \dots o_6\}$, six independent points ²⁵,

• A has exactly six bisecant lines contained in G(1, 4).

Modulo \$\$\$\$\$\$\$\$\$6 it is not restrictive to fix the set

$$O:=\{o_1\ldots o_6\}.$$

- $\mathcal{R} := \{ \text{sextic rational scrolls } \overline{R} / \text{Sing } \overline{R} = O \}$
- We have:

Theorem

 \mathcal{D}_8 is birational to a $P^9\text{-bundle over}~\mathcal{R}/\mathfrak{s}_6.$ 26

²⁵In the unique open *PGL*(5)-orbit

²⁶ More precisely over a no empty open set of $\mathcal{R}/\mathfrak{s}_6$ with fibre $|\mathcal{I}_{A/T}(2)|$ at $\overline{R} = \overline{\mathfrak{Q}}_A(R)$. $\mathbb{R} \to \mathbb{R} \oplus \mathbb{R} \to \mathbb{R} \oplus \mathbb{R}$

- What is $\mathcal{R}/\mathfrak{s}_6$?
- The answer relies on the studies of a person of the same countryside of Alberto Collino:

 Corrado Segre (Saluzzo 1863 - Torino 1924) described singular cubic 3-folds in a famous Memoir. Here we come to meet <u>six nodal cubic 3-folds V</u> and their geometry described by Corrado Segre, we can assume

 $V \in |\mathcal{I}_O^2(3)|.$

For this geometry see I. Dolgachev's contribution to the volume

From classical to modern Algebraic Geometry

Corrado Segre's Mastership and Legacy

• To appear in Trends in History of Science, Birkhauser.

- $\mathbb{I} := |\mathcal{I}_O^2(3)|$ is a linear system of dimension 4.
- ▶ It defines a <u>not dominant</u> rational map $f : \mathbf{P}^4 \to \mathbb{I}^*$.
- $f(\mathbf{P}^4) = \Sigma :=$ Segre's 10-nodal cubic.
- general fibre of f: a rational normal quartic.

• The Fano surface F(V) splits as follows. Let $I \in F(V)$:

f(I) = cubic curve in f(V) = smooth cubic surface

- f(I) is either a plane or a skew cubic in f(V).
- Let f(I) be skew: |f(I)| contracts a sixer *e* of lines.

►
$$F(V) = f(V) \cup |f(I)| \cup |5f(I) - 2e|.$$

► This configures a Schlaefli double six: |f(l)| contracts e and its conjugate sixer is contracted by |5f(l) - e|.

• Concerning us and $\mathcal{R}/\mathfrak{s}_6$ it is easy to show that:

• Let $\overline{R} \in \mathcal{R}$ be general ten $\exists ! V \in \mathbb{I} := |\mathcal{I}_{O}^{2}(3)| / V \supset \overline{R}$.

• The assignement $\overline{R} \longrightarrow V$ defines a dominant map

$$p: \mathcal{R}/\mathfrak{s}_6 \to \mathbb{I}/\mathfrak{s}_6.$$

It is well known that I/\$\$6\$ is rational and actually the weighted projective space of dimension four

$$\mathbb{P}[1, 2, 3, 4, 5]$$

- It is the moduli space of Schlaefli double sixers via F(V) and the assignment V → f(V).
- It admits an obvious double cover

$$\pi: \mathcal{P}_6 \to \mathbb{P}[1, 2, 3, 4, 5]$$

where \mathcal{P}_6 is the moduli space of six points in \mathbf{P}^2 .

- The ruling of \overline{R} defines a curve in F(V).
- This is a conic in $|f(I)| \cup |5f(I) 2e|$, hence

$$\{\overline{R} \in \mathcal{R}/\overline{R} \subset V\} = \mathbf{P}^5 \ V \ \mathbf{P}^5$$

• It follows that $\mathbb{R}/\mathfrak{s}_6$ is birationally a \mathbf{P}^5 -bundle on \mathcal{P}_6 : ²⁷

$$\mathcal{D}_8 \cong (\mathcal{P}_6 \times \mathbf{P}^5) \times \mathbf{P}^9.$$