
09/05/2016

1

streaming algorithms

data arrive one-by-one and it is
not feasible to store the entire

sequence

why streaming algorithms

• networking

– billions of packets per hour per equipment

– each provider has hundreds of equipments

– detect anomalies, faults, and security problems

• telecommunications

– there are billions telephone calls in North America
each day

– analyze

09/05/2016

2

find the missing number

a sequence of distinct numbers
arrives and one is missing

find the missing number

a sequence of n numbers a1, …. , an arrives

• all numbers are different and have values
between 1 and 𝑛 + 1, which value is missing?

• we have only log 𝑛 space

• example:

– there are 11 soccer players with numbers 1, …, 11.

– we see 10 of them one by one, which one is missing?

• because of the memory constraint we can
remember just one number

09/05/2016

3

1

8

09/05/2016

4

5

11

09/05/2016

5

3

9

09/05/2016

6

2

6

09/05/2016

7

7

4

09/05/2016

8

which number is missing?

10

find the missing number – algorithm

• start a sum S with value 0

• when a number ai arrives, add ai to S

• when the stream is over, compute the sum
1 + 2 + 3 + 4,… . , + 𝑛 + (𝑛 + 1)

• output the difference between the sum and S

09/05/2016

9

a counting problem

counting many elements using a
few symbols

a counting problem

• a huge sequence of object arrives and a small
memory is available

• objects arrive one-by-one and you have to
count the objects

• of course if the objects are n a memory that
can store 𝑂(log10n) symbols is enough

• what happens if the available memory has less
than such space?

09/05/2016

10

approximate counting

• suppose to have a memory with size log10log10n

• can you still count the objects, at least
approximately?

• since we can count n objects with log10n symbols
we can hope, with log10log10n symbols, to count
the number of symbols of the count

• we can hope to estimate the "order of
magnitude" of n

approximate counting

• number: II

• representation with log10n symbols: 40

• representation with log10log10n symbols: 2

– representation with 2 symbols; hence it less than

100 and greater than 9

09/05/2016

11

a simple algorithm for standard
counting

• start a counter C with value 0

• when an object arrives, increase C by 1

• when the stream is over, output C

Morris’ algorithm for approximate
counting, 1977

• start a counter X with value 0

• when an object arrives, increase X by 1 with

probability
1

10𝑋

• when the stream is over, output 10X-1

the algorithm is probabilistic: it exploits
randomization

claim: the expected value of 10X is 𝑛 + 1; with
math notation 𝐸 10𝑋 = 𝑛 + 1

09/05/2016

12

expected value

• the expected value is what one expects to
happen on average

• suppose random variable 𝑋 can take value 𝑥1
with probability 𝑝1, value 𝑥2 with probability
𝑝2, …., up to value 𝑥𝑘 with probability 𝑝𝑘; the
expectation of this random variable 𝑋 is
defined as

𝐸 𝑋 = 𝑥1𝑝1 + 𝑥2𝑝2 +⋯+ 𝑥𝑘𝑝𝑘

expected value – example

• suppose 𝑋 represents the outcome of a roll of
a six-sided dice

• the possible values for 𝑋 are 1, 2, 3, 4, 5, 6, all

equally likely (each having the probability of
1

6
)

• the expected value of 𝑋 is 𝐸 𝑋 = 1
1

6
+ 2

1

6
+

3
1

6
+ 4

1

6
+ 5

1

6
+ 6

1

6
= 3.5

09/05/2016

13

approximate counting – intuition

• first object arrives: currently X=0; hence, X is

incremented with probability
1

100
=
1

1
=1

• more objects arrive: for each of them X is

incremented with probability
1

101
=
1

10
; hence, it

is very likely that after 10 objects X will be
equal to 2

Morris’ algorithm for approximate
counting – intuition

• more objects arrive: for each of them X is

incremented with probability
1

102
=

1

100
; hence,

it is very likely that after 100 objects X will be
equal to 3

• ….

• hence, it is very likely that X is increased by 1
for the first 10 objects, by 1 for the next 100
objects, , by 1 for the next 1000 objects, ….

09/05/2016

14

a majority problem

?

a majority problem

• stream of the purchase orders of NYSE

• each order is labeled with a number

– identifies the stock

• is it true that the majority of the orders refer
to one stock?

– there is a stock leading the market

09/05/2016

15

majority in a stream of numbers

• suppose a stream of 𝑛 numbers arrives, each
less or equal than 𝑛

• is there any number that appears in the
stream more than 𝑛 2 times?

1 2 2 3 1 1 2 1 1 1 3 1 1 1 2 1 yes

1 2 2 3 1 1 2 1 3 2 3 1 1 2 2 1 no

if the memory is not a problem

• we can use a counter for each number

• plus a counter for the stream

09/05/2016

16

small memory

• what happens if the memory is small?

• suppose to have only one counter plus one
cell of memory to store exactly one number

– an amount of memory that is 𝑂(log 𝑛)

• we name 𝐶 the counter and 𝑀 the cell of
memory for just one number

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

• output 𝑀

09/05/2016

17

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 =

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 =

09/05/2016

18

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1

09/05/2016

19

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 1

09/05/2016

20

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 2

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 2

09/05/2016

21

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 2

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 2

09/05/2016

22

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1

09/05/2016

23

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 2 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 2 𝑀 = 1

09/05/2016

24

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 3 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 3 𝑀 = 1

09/05/2016

25

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 4 𝑀 = 1

analysis – why it works?

• suppose that the stream contains a number,
say 7, that appears more than 𝑛 2 times

• the numbers different from 7 decrease the
counter of 7 each at most once

09/05/2016

26

does it really work?

• notice that if there is no number with the
majority then the algotithm outputs the
wrong number

how to make it work?

• at the end of the stream we do a second pass
on the same stream cheching if the selected
number has the majority

• the algorithm performs two scans on the
stream

• this is semi-streaming

09/05/2016

27

sampling a stream of
objects

sampling

• sampling is the selection of a subset of objects
(sample) within a large population of objects

• the target is to study the characteristic of the
entire population looking only at the sample

population sample

09/05/2016

28

sampling

• so we can ask queries about the selected
subset and have the answers be statistically
representative of the stream as a whole

sampling a sequence of 𝑛 objects

• suppose to have a sequence of 𝑛 objects,
where 𝑛 is known in advance

• we want to determine a sample of the
sequence consisting of just one object, so that
all the objects have the same probability to be
in the sample

09/05/2016

29

sampling a sequence of 𝑛 objects

• a simple algorithm for computing the sample

– randomize an index 𝑖 between 1 and 𝑛 with equal
probability

– put in the sample the 𝑖-th element of the
sequence

if 𝑛 is not known in advance?

• suppose that the sequence is a stream whose
length is not known

• how to compute the one-element-sample so
that all the objects have the same probability
to be seleced?

09/05/2016

30

if 𝑛 is not known in advance?

• a simple algorithm

– let 𝑅 be the sample

– when the first object arrives put it into 𝑅

– when the 𝑖-th object arrives (𝑖 > 1)

• with probability 1 𝑖 subsitute the object contained into
𝑅 with the new object

• with probability 1 − 1 𝑖 do nothing

if 𝑛 is not known in advance?
• analysis

– if the stream has one item it is kept with probability 1

– if the stream has two items each is kept with
probability 1 2

– if the stream has three items:

• the third is kept with probability 1 3

• the second substituted the first with probability 1 2 and
then was substituted by the third with probability (1 −
 1 3); hence it is in the sample with probability 1 2 (1 −

09/05/2016

31

sampling 𝑘 elements of a stream

• Vitter algorithm – reservoir sampling

– let 𝑅 be the sample, with 𝑘 slots, each denoted
𝑅[𝑘]

– for 𝑖 ≤ 𝑘 (first portion of the stream) simply
assign the 𝑖-th element of the stream to 𝑅[𝑖]

– for 𝑖 > 𝑘 (second portion of the stream), when
the 𝑖-th element arrives select a random number 𝑗
between 1 and 𝑖; if 𝑗 ≤ 𝑘 then substitute 𝑅[𝑗]
with the 𝑖-th element

sampling 𝑘 elements of a stream

• observe that Vitter algorithm is a
generalization of the algorithm for sampling
just one element

• the probability of any element to be in the
sample is 𝑘 𝑛

09/05/2016

32

a filtering problem

only the elements belonging to a
certain set should be retained

a filtering problem

• filter stream so that elements that belong to a
particular set are allowed through, while
“most” nonmembers are deleted

• the set is too large to store in main memory

09/05/2016

33

spam or not spam

• we have a set 𝑆 of one billion allowed email
addresses – those that we will allow through
because we believe them not to be spam

– typical email address is 20 bytes or more, it is not
reasonable to store 𝑆 in main memory

• stream emails

– for each email we have either to forward or to
discard

– we tolerate that a small percentage of spam gets
through

Bloom Filter

• a Bloom filter is a succinct description of a
set of items

66

09/05/2016

34

hash function

• a hash function is used to map data of
arbitrary size to data of fixed size

Bloom Filter

• A Bloom filter implements a dictionary with
–A bit vector 𝐹 of size 𝑚
–A collection of hash functions ℎ1, ⋯ , ℎ𝑘

mapping an item to a integer in the range
[0,𝑚 − 1]

• Add an item 𝑥
–for 𝑖 = 1 to 𝑘

• 𝐹 ℎ𝑖 𝑥 = 1

• Check for the presence of item 𝑥
–for 𝑖 = 1 to 𝑘

• if 𝐹 ℎ𝑖 𝑥 = 0 return false

–return true
68

09/05/2016

35

Bloom Filter example

• Let F be a vector with m = 16 bits

69

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• We use hash functions h1 and h2 and add “roberto”
• Assuming h1(roberto) = 4 and h2(roberto) = 7 we obtain

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bloom Filter example

70

• Next, we add “pino”
• Assuming h1(pino) = 12 and h2(pino) = 14 we obtain

0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• We check for the presence of “pino”
• Since h1(pino) = 12 and h2(pino) = 14, and since F(12)

= 1 and F(14) = 1 we return true (ok)
• We check for the presence of “paolo”
• Assuming h1(paolo) = 7 and h2(paolo) = 14, since F(7) = 1 and

F(14) = 1 we return true (false positive)

09/05/2016

36

Properties of a Bloom Filter

• a Bloom filter does not have false negatives
• a Bloom filter may have false positives

• due to collisions in the hash functions
• for n elements stored in a Bloom filter of

size m with k hash functions, the
probability of a false positive is about

P ≈ (1 - e-kn/m)k

• P is minimized for k = (ln 2) m / n, which
gives P ≈ 0.7 m/n

71

back to the email

• false positives
• for n elements stored in a Bloom filter of

size m with k hash functions, the
probability of a false positive is about

P ≈ (1 - e-kn/m)k

• P is minimized for k = (ln 2) m / n, which
gives P ≈ 0.62 m/n

if n=1,000,000,000 - suppose m=5,000,000,000
bits - we use k=4 hash functions and obtain a
probability of false positives P=0.09

72

09/05/2016

37

streaming algorithm – conclusions

• a streaming algorithm is an algorithm for
processing a data stream

– the input is presented as a sequence of items and
can be examined in one pass (or a few passes)

– the available memory is limited

• much less than the input size

– the processing time per item is also limited

• the time for processing an item is less than the
interarrival time between two consecutive items

