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streaming algorithms

data arrive one-by-one and it is 
not feasible to store the entire 

sequence

why streaming algorithms

• networking

– billions of packets per hour per equipment

– each provider has hundreds of equipments

– detect anomalies, faults, and security problems

• telecommunications

– there are billions telephone calls in North America 
each day

– analyze
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find the missing number

a sequence of distinct numbers 
arrives and one is missing

find the missing number

a sequence of n numbers a1, …. , an arrives 

• all numbers are different and have values 
between 1 and 𝑛 + 1, which value is missing? 

• we have only log 𝑛 space

• example:

– there are 11 soccer players with numbers 1, …, 11. 

– we see 10 of them one by one, which one is missing? 

• because of the memory constraint we can 
remember just one number
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which number is missing?

10

find the missing number – algorithm

• start a sum S with value 0

• when a number ai arrives, add ai to S

• when the stream is over, compute the sum 
1 + 2 + 3 + 4,… . , + 𝑛 + (𝑛 + 1)

• output the difference between the sum and S
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a counting problem

counting many elements using a 
few symbols

a counting problem

• a huge sequence of object arrives and a small 
memory is available

• objects arrive one-by-one and you have to 
count the objects

• of course if the objects are n a memory that
can store 𝑂(log10n) symbols is enough

• what happens if the available memory has less
than such space?
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approximate counting

• suppose to have a memory with size log10log10n

• can you still count the objects, at least
approximately?

• since we can count n objects with log10n symbols
we can hope, with log10log10n symbols, to count
the number of symbols of the count

• we can hope to estimate the "order of 
magnitude" of n

approximate counting

• number: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

• representation with log10n symbols: 40

• representation with log10log10n symbols: 2

– representation with 2 symbols; hence it less than

100 and greater than 9
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a simple algorithm for standard 
counting

• start a counter C with value 0

• when an object arrives, increase C by 1

• when the stream is over, output C

Morris’ algorithm for approximate
counting, 1977

• start a counter X with value 0

• when an object arrives, increase X by 1 with 

probability
1

10𝑋

• when the stream is over, output 10X-1

the algorithm is probabilistic: it exploits 
randomization

claim: the expected value of 10X is 𝑛 + 1; with 
math notation 𝐸 10𝑋 = 𝑛 + 1
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expected value

• the expected value is what one expects to 
happen on average

• suppose random variable 𝑋 can take value 𝑥1
with probability 𝑝1, value 𝑥2 with probability 
𝑝2, …., up to value 𝑥𝑘 with probability 𝑝𝑘; the 
expectation of this random variable 𝑋 is 
defined as 

𝐸 𝑋 = 𝑥1𝑝1 + 𝑥2𝑝2 +⋯+ 𝑥𝑘𝑝𝑘

expected value – example

• suppose 𝑋 represents the outcome of a roll of 
a six-sided dice

• the possible values for 𝑋 are 1, 2, 3, 4, 5, 6, all 

equally likely (each having the probability of 
1

6
)

• the expected value of 𝑋 is 𝐸 𝑋 = 1
1

6
+ 2

1

6
+

3
1

6
+ 4

1

6
+ 5

1

6
+ 6

1

6
= 3.5
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approximate counting – intuition

• first object arrives: currently X=0; hence, X is

incremented with probability
1

100
=
1

1
=1

• more objects arrive: for each of them X is

incremented with probability
1

101
=
1

10
; hence, it

is very likely that after 10 objects X will be 
equal to 2

Morris’ algorithm for approximate
counting – intuition

• more objects arrive: for each of them X is

incremented with probability
1

102
=

1

100
; hence, 

it is very likely that after 100 objects X will be 
equal to 3

• ….

• hence, it is very likely that X is increased by 1
for the first 10 objects, by 1 for the next 100
objects, , by 1 for the next 1000 objects, ….
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a majority problem

?

a majority problem

• stream of the purchase orders of NYSE

• each order is labeled with a number

– identifies the stock

• is it true that the majority of the orders refer
to one stock?

– there is a stock leading the market
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majority in a stream of numbers

• suppose a stream of 𝑛 numbers arrives, each
less or equal than 𝑛

• is there any number that appears in the 
stream more than  𝑛 2 times?

1 2 2 3 1 1 2 1 1 1 3 1 1 1 2 1 yes

1 2 2 3 1 1 2 1 3 2 3 1 1 2 2 1 no

if the memory is not a problem

• we can use a counter for each number

• plus a counter for the stream
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small memory

• what happens if the memory is small?

• suppose to have only one counter plus one
cell of memory to store exactly one number

– an amount of memory that is 𝑂(log 𝑛)

• we name 𝐶 the counter and 𝑀 the cell of 
memory for just one number

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

• output 𝑀
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 =

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 =
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 1
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 2

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 2



09/05/2016

21

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 2

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 0 𝑀 = 2
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 1 𝑀 = 1
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 2 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 2 𝑀 = 1
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 3 𝑀 = 1

Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 3 𝑀 = 1
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Boyer-Moore algorithm

• set counter 𝐶 to 0

• when a number 𝑖 arrives

– if 𝐶 = 0 then set 𝑀 to 𝑖 and add 1 to 𝐶

– else if 𝑀 = 𝑖

• then add 1 to 𝐶

• else subtract 1 to 𝐶

1 2 2 3 1 1 1 1 1 1 3 1 1 1 2 1

𝐶 = 4 𝑀 = 1

analysis – why it works?

• suppose that the stream contains a number, 
say 7, that appears more than  𝑛 2 times

• the numbers different from 7 decrease the 
counter of 7 each at most once
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does it really work?

• notice that if there is no number with the 
majority then the algotithm outputs the 
wrong number

how to make it work?

• at the end of the stream we do a second pass 
on the same stream cheching if the selected
number has the majority

• the algorithm performs two scans on the 
stream

• this is semi-streaming
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sampling a stream of 
objects

sampling

• sampling is the selection of a subset of objects
(sample) within a large population of objects

• the target is to study the characteristic of the 
entire population looking only at the sample

population sample
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sampling

• so we can ask queries about the selected 
subset and have the answers be statistically 
representative of the stream as a whole

sampling a sequence of 𝑛 objects

• suppose to have a sequence of 𝑛 objects, 
where 𝑛 is known in advance

• we want to determine a sample of the 
sequence consisting of just one object, so that
all the objects have the same probability to be 
in the sample
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sampling a sequence of 𝑛 objects

• a simple algorithm for computing the sample

– randomize an index 𝑖 between 1 and 𝑛 with equal
probability

– put in the sample the 𝑖-th element of the 
sequence

if 𝑛 is not known in advance?

• suppose that the sequence is a stream whose
length is not known

• how to compute the one-element-sample so 
that all the objects have the same probability
to be seleced?
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if 𝑛 is not known in advance?

• a simple algorithm

– let 𝑅 be the sample

– when the first object arrives put it into 𝑅

– when the 𝑖-th object arrives (𝑖 > 1)

• with probability  1 𝑖 subsitute the object contained into
𝑅 with the new object

• with probability 1 −  1 𝑖 do nothing

if 𝑛 is not known in advance?
• analysis

– if the stream has one item it is kept with probability 1

– if the stream has two items each is kept with 
probability  1 2

– if the stream has three items: 

• the third is kept with probability  1 3

• the second substituted the first with probability  1 2 and 
then was substituted by the third with probability (1 −
 1 3); hence it is in the sample with probability  1 2 (1 −
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sampling 𝑘 elements of a stream

• Vitter algorithm – reservoir sampling

– let 𝑅 be the sample, with 𝑘 slots, each denoted
𝑅[𝑘]

– for 𝑖 ≤ 𝑘 (first portion of the stream) simply
assign the 𝑖-th element of the stream to 𝑅[𝑖]

– for 𝑖 > 𝑘 (second portion of the stream), when
the 𝑖-th element arrives select a random number 𝑗
between 1 and 𝑖; if 𝑗 ≤ 𝑘 then substitute 𝑅[𝑗]
with the 𝑖-th element

sampling 𝑘 elements of a stream

• observe that Vitter algorithm is a 
generalization of the algorithm for sampling
just one element

• the probability of any element to be in the 
sample is  𝑘 𝑛
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a filtering problem

only the elements belonging to a 
certain set should be retained

a filtering problem

• filter stream so that elements that belong to a 
particular set are allowed through, while 
“most” nonmembers are deleted

• the set is too large to store in main memory
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spam or not spam

• we have a set 𝑆 of one billion allowed email 
addresses – those that we will allow through 
because we believe them not to be spam

– typical email address is 20 bytes or more, it is not 
reasonable to store 𝑆 in main memory

• stream emails

– for each email we have either to forward or to 
discard

– we tolerate that a small percentage of spam gets
through

Bloom Filter

• a Bloom filter is a succinct description of a 
set of items

66
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hash function

• a hash function is used to map data of 
arbitrary size to data of fixed size

Bloom Filter

• A Bloom filter implements a dictionary with
–A bit vector 𝐹 of size 𝑚
–A collection of hash functions ℎ1, ⋯ , ℎ𝑘

mapping an item to a integer in the range 
[0,𝑚 − 1]

• Add an item 𝑥
–for 𝑖 = 1 to 𝑘

• 𝐹 ℎ𝑖 𝑥 = 1

• Check for the presence of item 𝑥
–for 𝑖 = 1 to 𝑘

• if 𝐹 ℎ𝑖 𝑥 = 0 return false

–return true
68
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Bloom Filter example

• Let F be a vector with m = 16 bits

69

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• We use hash functions h1 and h2 and add “roberto”
• Assuming h1(roberto) = 4 and h2(roberto) = 7 we obtain

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bloom Filter example

70

• Next, we add “pino”
• Assuming h1(pino) = 12 and h2(pino) = 14 we obtain

0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• We check for the presence of “pino”
• Since h1(pino) = 12 and h2(pino) = 14, and since F(12) 

= 1 and F(14) = 1 we return true (ok)
• We check for the presence of “paolo”
• Assuming h1(paolo) = 7 and h2(paolo) = 14, since F(7) = 1 and 

F(14) = 1 we return true (false positive)
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Properties of a Bloom Filter

• a Bloom filter does not have false negatives
• a Bloom filter may have false positives

• due to collisions in the hash functions
• for n elements stored in a Bloom filter of 

size m with k hash functions, the 
probability of a false positive is about 

P ≈ (1 - e-kn/m)k

• P is minimized for k = (ln 2) m / n, which 
gives P ≈ 0.7 m/n

71

back to the email

• false positives
• for n elements stored in a Bloom filter of 

size m with k hash functions, the 
probability of a false positive is about 

P ≈ (1 - e-kn/m)k

• P is minimized for k = (ln 2) m / n, which 
gives P ≈ 0.62 m/n

if n=1,000,000,000 - suppose m=5,000,000,000 
bits - we use k=4 hash functions and obtain a 
probability of false positives P=0.09

72
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streaming algorithm – conclusions

• a streaming algorithm is an algorithm for 
processing a data stream 

– the input is presented as a sequence of items and 
can be examined in one pass (or a few passes)

– the available memory is limited

• much less than the input size

– the processing time per item is also limited

• the time for processing an item is less than the 
interarrival time between two consecutive items


